형강을 사용한 철근콘크리트 기둥-철골 보 접합부의 투저항성능

국문초록

영문초록

목차

1. 서론

2. 복합구조 개요 및 이론 연구

3. 복합구조 접합부

4. 설계지침

5. 투저항성능 시험

6. 실험결과 및 분석

7. 결론

참고문헌
工學碩士學位 請求論文

T 형강을 사용한 철근콘크리트
기둥-철골 보 접합부의 힘 저항성능

The Moment Resisting Performance of
R.C. Column - Steel Girder Connection System
With Structural Tees

1998年 8月

指導教授 金 尚 植

이 論文을 碩士學位 論文으로 提出함.

仁荷大學校 大學院
建築工學科（構造專攻）

趙 二 勳

268144
T 形강을 사용한 철근콘크리트
기둥 - 철골 보 접합부의 휙 저항성능

The Moment Resisting Performance of
R.C. Column - Steel Girder Connection System
With Structural Tees

1998年 8月

仁荷大學校 大學院
建築工學科（構造専攻）
趙 二 勳
이 논문을 오성우의 학사학위 논문으로 인정함.

1998년 8월

主 審

副 審

委 員
요 약

복합구조 시스템은 일반적으로 기둥을 철근콘크리트, 보를 철골 구조로 하여 기둥 콘크리트의 압축력 지지 효율과 철골 보의 점 지항 효율을 크게 한 구조로서, 제료와 구조 효율성면에서 많은 이점이 있지만 두 시스템간 상이 성(相異性)으로 보기 기둥 설계와 시공성에서 문제점을 야기하기도 한다. 따라서, 이 연구는 철골 보의 옹력전달이 철근콘크리트 기둥에 원활히 이루어지면서 시공성을 향상시킬 수 있는 복합구조 접합부를 개발하고, 그 시스템에 대한 점 지항성능 시험을 수행하여 설계추정에 대하여 접합부가 충분한 모멘트 전달 및 지지성능이 있는지를 실험을 통하여 확인하는 것을 목적으로 한다. 이 연구에서 개발중인 복합구조 접합부에서는 기둥과 보 사이에 발생하는 전단력과 모멘트를 전달하기 위해 두 가지 요소가 사용되었다. 먼저, 보의 양단부의 웨브는 기둥 T형 강 팔레지에 공장용접되어 있는 전단접합판에 볼트 접합되어 보 단부의 전단력을 기둥으로 전달하도록 하였고, 다음으로 모멘트로 인하여 보의 폐쇄에 발생하는 휠인장력은 웨브 볼트 접합후 현장용접되는 G형 강고 고강도 강봉을 통하여 지지되도록 의도되었다. 이 연구에서는 구조 시험의 첫 단계로서 개발 중인 접합부의 모멘트 지하 성능 시험을 수행하였으며, G형 강고의 크기 및 G형 강고 보강하기 위해 사용된 스티프너의 두께를 실험 변수로 하여 모두 열두 개의 시험 체가 만들어졌다. 시험은 30 t에서 70 t까지 10 t 간격으로 과파에 이를 때까지 단계적으로 가격 및 점하를 반복하였으며, 시험의 점 지항성능을 밝혀주기 위해 주의 깊은 관찰과 조사가 이루어졌다.

이상과 같은 실험 연구에서 얻은 결론은 다음과 같이 요약할 수 있다.
1) 이 연구에서 고안한 복합구조 접합부는 T형 강고, 스티프너 보강된 G형 강고, 고강도 강봉, 전단접합판 등의 구성되어 가공성과 현장시공성이 우수한 것으로 확인되었다.
2) 보의 힘응력은 보 플랜저 - 그 형강의 경로, 보의 전단응력은 보의 헤브 - 전단접합판의 경로를 통하여 기둥에 전달되도록 설계되었으며, 구조 설。

3) 시험체의 설계모멘트는 힘의 전달과정에 있는 보 플랜저와 그 형강 육

4) 시험체는 AL 시험체의 항복모멘트 71.89 t·cm, BL 시험체의 육결 항

폭모멘트 110.95 t·cm 보다 2 배 정도 큰 모멘트에서 파괴되었으며, 이로부

이 형식의 접합부는 충분한 힘 지항성을 가지고 있고 완활한 응력 호

름을 보이고 있는 것으로 나타났다.
ABSTRACT

Most buildings have their structural systems either reinforced concrete structures or steel structures, both of which have mutually different strength and weakness in the points of the load carrying capacities and the maintenances.

Though the composite system, which is consisted of the reinforced concrete and the structural steel has some advantages in the structural efficiency and the construction productivity by complementing the shortcomings between the two systems, it also has a lot of problems in practice due to the systematic dissimilarity of the material properties and the construction process.

This research is aimed at the development of the composite beam-column connection system by which the steel beam can be connected to the R/C column without disturbance in stress transfer. In the system, two elements are used to transfer the shear and moment occurring between the column and the ends of the beam.

At first the webs of the beam’s both ends are to be bolted to the shear plates, which are shop welded to the flange of the T shaped column, by which the shear forces at the beam ends are transferred to the column, while the axial forces of the flanges of the beam due to moment are supported and transferred by the high strength steel bars through the structural angles which will be field welded after the web bolting. And as the first step of structural tests, the moment resisting performance test of this system has been carried out. In this study, a total of twelve specimens have been fabricated for the test variables of structural angle size, thickness of stiffeners used to reinforce the angle.
The tensile forces ranging from 30 tons to 70 tons have been applied to the test specimen by increasing 10 tons step by step up to the failure in the tests, and careful observations and investigations have been made for the verification of the moment resisting capacities of the system.

The main conclusions drawn from the study can be summarized as follows.

1) The composite framed connection system, being fabricated with structural tees, single angles with stiffner, high strength steel bars and shear connection plates has been confirmed to have very affirmative points in fabrication and construction from the limited observations of the tests.

2) It has been proved from the tests that the stress due to the beam bending has been transferred to the column and resisted by the high strength steel bar effectively.

3) The design strength of the system has been characterized as the welding strength of the angle in the tests.

4) The failure strength of the specimens have been measured nearly twice the yielding strength of the welds of the angle.
제목 차례

요 약

ABSTRACT

제 1 장 서 론 ... 1
 1.1 연구 배경 .. 1
 1.2 연구 목적 .. 1
 1.3 연구 내용 및 방법 .. 2
 1.4 연구 동향 ... 2

제 2 장 복합구조 개요 및 이론 연구 .. 4
 2.1 개요 .. 4
 2.2 복합구조 접합부 ... 6
 2.2.1 접합부 작용력 .. 6
 2.2.2 보 관통형식 .. 7
 2.2.3 기둥 관통형식 .. 10
 2.3 ASCE 설계지침 .. 13
 2.3.1 적용범위 .. 13
 2.3.2 접합부 상세 ... 13
 2.3.3 접합부에 적용하는 부재역 14
 2.3.4 파괴모드 .. 15
 2.3.5 접합부 유효폭 .. 16
 2.3.6 지압내력산정법 ... 17
 2.3.7 전단내력산정법 ... 18

268144
제 3 장 복합구조 접합부 형식 .. 20
 3.1 구성요소 .. 20
 3.2 형식 설계 .. 20
 3.2.1 보의 최대 허용내력 산정 20
 3.2.2 강봉 ... 21
 3.2.3 그 형강 ... 22
 3.2.4 보 플랜지와 그 형강 웅집 23

제 4 장 힘 저항성능 시험 ... 26
 4.1 개 요 ... 26
 4.2 시험체의 계획 및 형태 .. 26
 4.2.1 그 형강에 보강된 스티포너의 단면성능 28
 4.3 사용 재료 및 시험체 제작 30
 4.4 가격 및 측정 ... 30

제 5 장 실험결과 및 분석 ... 35
 5.1 파괴상황 .. 35
 5.2 최대 내력 ... 38
 5.3 힘의 전달 경로 .. 39
 5.4 그 형강의 힘 저항성능 45

제 6 장 결 론 .. 49

참 고 문헌 ... 50
그림 2.1 복합구조 접합부 형식 ...5
그림 2.2 환하중을 받는 복합구조 ..6
그림 2.3 접합부에 작용하는 힘의 모델링6
그림 2.4 막음판의 응력전달기구 ..7
그림 2.5 스타일랜드의 응력전달기구 ..8
그림 2.6 지압기둥의 응력전달기구 ..8
그림 2.7 연직보강근의 응력전달기구9
그림 2.8 접합부의 응력전달기구 ...9
그림 2.9 정착철물의 응력전달기구10
그림 2.10 중판의 응력전달기구 ...11
그림 2.11 다이아프램의 응력전달기구12
그림 2.12 경사스티프너의 응력전달기구12
그림 2.13 접합부 상세 ..14
그림 2.14 접합부에 작용하는 부재력15
그림 2.15 기둥 관통형식 접합부의 파괴형식15
그림 2.16 접합부 유호폭 ..16
그림 3.1 T 형강을 사용한 복합구조 접합부21
그림 3.2 스티프너 보강된 T 형강의 예22
그림 3.3 H 형강에 용접된 T 형강의 용접점수23
그림 4.1 스티프너 상세 ...27
그림 4.2 시험체의 형태 및 크기 ...29
그림 4.3 변형도계이지 위치도 ...32
그림 4.4 시험체의 설치상황 ...33
그림 5.1 시험체별 최고하중과 용접내력39
그림 5.2 SG 7과 SG 9의 하중-변형도 곡선 ... 40
그림 5.3 AL 시험체의 스티프너 하중-변형도 곡선 46
그림 5.4 BL 시험체의 스티프너 하중-변형도 곡선 47
그림 5.5 시험체별 모멘트 내력 비교 .. 48
표 차례

<table>
<thead>
<tr>
<th>표 번호</th>
<th>제목</th>
<th>페이지</th>
</tr>
</thead>
<tbody>
<tr>
<td>표 3.1</td>
<td>복합구조 형식의 구성요소</td>
<td>20</td>
</tr>
<tr>
<td>표 3.2</td>
<td>보 플랜지와 ㄱ 형강 용접면의 용접내력 산정</td>
<td>25</td>
</tr>
<tr>
<td>표 4.1</td>
<td>시험체 일람표 및 보강 스티프너 단면계수</td>
<td>28</td>
</tr>
<tr>
<td>표 4.2</td>
<td>강봉의 기계적 성질</td>
<td>30</td>
</tr>
<tr>
<td>표 5.1</td>
<td>시험체별 최고하중</td>
<td>38</td>
</tr>
<tr>
<td>표 5.2</td>
<td>SG 7과 SG 9의 변형도 비교</td>
<td>38</td>
</tr>
<tr>
<td>표 5.3</td>
<td>모멘트 비교</td>
<td>45</td>
</tr>
</tbody>
</table>

사진 차례

<table>
<thead>
<tr>
<th>사진 번호</th>
<th>제목</th>
<th>페이지</th>
</tr>
</thead>
<tbody>
<tr>
<td>사진 4.1</td>
<td>용접레이저를 이용한 용접 두께 확인</td>
<td>31</td>
</tr>
<tr>
<td>사진 4.2</td>
<td>설치된 시험체 전경</td>
<td>34</td>
</tr>
<tr>
<td>사진 5.1</td>
<td>ㄱ 형강 변형에 따른 강봉의 힘</td>
<td>36</td>
</tr>
<tr>
<td>사진 5.2</td>
<td>스티프너 용접 과정에 따른 ㄱ 형강 목부위 파괴</td>
<td>36</td>
</tr>
<tr>
<td>사진 5.3</td>
<td>ㄱ 형강과 보 플랜지 용접면 파괴</td>
<td>37</td>
</tr>
<tr>
<td>사진 5.4</td>
<td>ㄱ 형강과 보 플랜지 용접면 파괴</td>
<td>37</td>
</tr>
</tbody>
</table>
기 호

\(a_c \) : 콘크리트 압축력의 길이
\(A_{rod} \) : 강봉의 단면적
\(b \) : 보의 길이 방향에 수직하게 측정된 기둥의 폭
\(b_l \) : 내부 패널 폭
\(b_j \) : 접합부의 유효폭
\(b_f \) : 보 플랜저의 폭
\(b_m \) : 접합부에서 최대 유효폭
\(b_o \) : 외부 패널 폭
\(b_p \) : 지압판 폭
\(C_e \) : 수직 지압력
\(C_{en} \) : 콘크리트 공칭 지압 강도
\(C_{orm} \) : 접합부 수직철물의 공칭 압축강도
\(d \) : 철물 보의 측
\(d_f \) : 보 플랜저의 중심간 거리
\(d_w \) : 보 웨브의 측
\(f_c' \) : 콘크리트의 압축강도
\(F_{y,rod} \) : 강봉 항복강도
\(F_{yp} \) : 웨브 패널의 항복강도
\(h \) : 보의 길이 방향에 평행하게 측정된 기둥의 가로길이
\(h_{ur} \) : 접합부 수직철물 사이의 거리
\(jh \) : 접합부 유효 가로길이
\(t_p \) : 지압판 두께
\(t_{wp} \) : 웨브 패널의 두께
\(T_{orm} \) : 접합부 수직철물의 공칭 인장강도
\(V_{c}' \) : 콘크리트에 의한 전단강도
\(V_{ch} \) : 외부 콘크리트 압축영역에 대한 전단강도
\(V_{cn} \) : 내부 콘크리트의 압축 기둥요소에 대한 전단강도
\(V_{s}' \) : 전단보강근에 의한 전단강도
\(V_{sn} \) : 웨브 패널 전단강도
제 1 장 서 론

1.1 연구 배경

구조설계는 시공성과 재료 절감을 통한 구조 효율성을 높이는 데 큰 전제 하에 발달하였으며 이를 위하여 다양한 구조형식의 개발이 이루어졌다.

철근콘크리트 기둥과 철골 보로 구성된 복합구조에서 철근콘크리트 기둥은 압축력을 효과적으로 지지하면서 내구성이 높고 거푸집 설치가 보에 비하여 쉬우며, 보를 철골로 하면 장스팬 구조가 가능하여 내부 공간의 활용도를 높일 수 있고 거푸집과 지주의 사용을 배제하면서 공기를 단축시킬 수 있어 설계와 시공에서 많은 장점을 얻을 수 있다.

이러한 구조의 재료적인 이점으로 복합구조 관련 연구가 미국, 일본 등에 서 활발하게 진행되고 있으며, 많은 구조형식의 개발이 이루어지고 있으나 이질 부재를 결합하기 때문에 단일구조 형식에 비해 구조일체성과 전달능력, 시공성 향상을 위한 구조 시스템 개발이 절실히 필요한 실정이다.

1.2 연구 목적

철근콘크리트 기둥-철골 보 접합부 형식의 개발에서는 해외의 접합부 상세와 우리나라 건축시공 및 재료, 시공장비 등을 고려하여 시공성이 높고 보·기둥 응력 전달을 원활히 할 수 있는 시스템을 고안하여 실용화하는 것을 개발목표로 한다.

이 연구는 재료 공급성, 현장 시공성, 구조 효율성이 높은 철근콘크리트 기둥과 철골 보 접합부를 개발하기 위하여 H 형강을 이론의 T 형강 대 개별 기반으로 하여 이들을 고강도 강봉으로 연결하고, 여기에 그 형강을 사용하여 보를 접합시키는 장치를 개발하고 이 중 그 형강과 보 접합부의 용접 성능과 훨 전달 및 지지성능을 시험을 통하여 파악하여 개발된 접합부의 구조 안정성 및 일체성을 확인하고자 한다.
1.3 연구 내용 및 방법

이 연구의 대상인 철근콘크리트 기둥-철골 보 접합부의 합의 흐름에서 보의 전단력은 접합부 지압요소의 지압저항으로 지지되고, 보의 회오멘트에 의한 인장력은 보 플랜지에 접합되는 "형강을 통하하여 강봉으로 전달된다. 이때 보 플랜지와 강봉의 편심에 의한 모멘트 지지 성능을 높이기 위하여 형강에 스티프너를 보강한다. 따라서 이 연구에서는 보의 플랜지와 접합되는 "형강과의 용접성능과 스티프너 보강에 따른 "형강의 힘 저항능능을 시험을 통하여 확인한다.

"형강과 보 플랜지 접합부의 용접성능을 알아보기 위하여 철골 보 플랜지의 최대 인장력을 지지할 수 있도록 Ø32 강봉(CT-BAR)을 가력장치를 이용하여 직접 인장력을 가하였으며 이때 보 플랜지와 인장력이 가해지는 강봉과의 편심으로 인하여 발생하는 모멘트를 지지할 수 있도록 "형강에 스티프너를 보강하여 단면성을 향상시켰다.

시험 변수로는 "형강을 L-130×130×12와 L-150×150×15의 두 종류로 변화시키고, 여기에 보강되는 스티프너의 두께를 9, 12, 16 mm로 하여 "형강의 두께에 따라 용접 지수가 결정되었으며 시험체는 동일 조건에 대하여 각 2개씩의 시험체를 제작하여 총 약 3개의 시험체가 제작되었다.

시험체의 거력을 200 t 용량의 안장구조시험기에서 하중계어방식으로 하여 탄성한계내의 기동과 소성저 등을 함께 관찰할 수 있도록 하중 이력을 30 t에서 70 t까지 10 t 간격으로 가격 및 제하를 반복하였으며, 보조장치를 제작하여 강봉과 보조장치를 연결하여 양방향 단순인장 제하하였다. 이때, 시험체는 보조장치와 약 3 cm의 거리를 이격하여 시험하였다.

1.4 연구 동향

철근콘크리트 기둥과 철골 보의 복합구조 형식은 이질 재료가 접합되기 때문에 두 부재간 접합부의 응력전달기구와 구조 내력 등의 기동에 대하여 명확한 규명을 하기 위한 연구 개발이 이루어져 왔다.

철근콘크리트 기둥-철골 보로 골조를 구성하는 시도가 1970년 清水吉
盛·吉田宏 등(16)에 의해 시도되었고 田中淳夫·西垣太郎(14)은 기둥 철골을 압축에 배치한 철골철근콘크리트 기둥과 철골 보의 실험에서 철골부분이 역의 50 퍼센트 정도를 부담할 수 있는 것으로 보고하였으며 若林寅·南宏一 등(11)의 기둥 철골량을 변수로 한 실험에서는 기둥에 철골이 완전히 없는 시험체의 경우 보 강도가 60 퍼센트 정도 밖에 발휘되지 않는다는고 보고 하였고, 이러한 연구에 힘입어 철골철근콘크리트 기둥에서 철골을 제거한 철근콘크리트 기둥과 철골 보의 복합구조가 탄생하였다.

南宏一·坂口昇(10)은 철근콘크리트 기둥-철골 보로 한 복합구조의 기둥·보 접합부의 응력 전달기구를 규명하기 위해서는 철골 보 축과 기둥 주근 축이 평행이 있기 때문에 스트리트-타이 모델로 구성한 임적 트러스로서 응력진달기구를 파악하였으며 米澤健次·野口博(10)은 비선형 구조해석 프로그램인 아바쿠스(ABAQUS) 프로그램을 이용한 실제의 비선형 유한요소해석을 통하여 복합구조 접합부의 응력전달기구를 관찰 검증을 하였다.

佐木仁·久保田勤 등(19)은 내부 접착형(十字형) 기둥·보 접합부에서 주각 및 주두를 밴드 플레이트 보강 유리에 따른 시험을 수행하여 보의 지배작용에 의한 기둥의 압축력 경사균열은 접합부 전단내력에 큰 영향을 준다는 것을 설명하였다.
제 2 장 복합구조 개요 및 이론 연구

2.1 개요

기존 건축물은 그 용도와 목적에 따라 철근콘크리트조나 철골조의 구조 형식을 사용하여 왔다. 그러나, 건축물의 기능이 복잡한 경우는 하나의 구조형식보다는 두 구조형식을 복합적으로 사용함으로써 구조성능을 최적으로 발휘하게 하는 경우도 있다. 이러한 복합구조 형식 중 철근콘크리트 기둥과 철골로 구성된 복합구조 형식은 축력에 강한 철근콘크리트 부재를 기둥에 사용하고, 점과 전단력에 우수한 저항력을 가진 철골 부재를 보로 사용하여 역학적으로 합리적이며 경제적인 구조물을 설계할 수 있는 형식이다.

복합구조 형식은 기존 구조 형식에 비하여 생산, 시공성이 향상되고, 건축생산에 영향을 미치는 사회적 요인(숙련기능자 부족, 고령화, 시장의 확대, 건축물의 대형화, 다양화)과 경제적 요인을 해결할 가능성을 가지고 있다.

복합구조 접합부 형식은 매우 다양하나 크게 접합부에서 보가 관통하는 보 관통형식과 기둥이 관통하는 기둥 관통형식으로 나눌 수 있다. 보 관통 형식은 철골보가 기둥 내부에서 서로 직교하는 형식으로 이 형식의 예로는 그림 2.1의 막연관형식, 지압관형식 등이 있으며, 기둥 관통형식은 보 철골이 기둥 내부를 관통하지 않기 때문에 기둥과 보 철골의 접합을 위하여 기둥내에 반드시 접합재(엠커볼트나 경착철물, 다이아프램 등)가 있어야 하는 것을 큰 특징으로 하며, 이 형식의 예로는 경착철물형식, 중판형식, 다이아프램 형식 등이 있다.
그림 2.1 복합구조접합부 형식
2.2 복합구조 집합부

2.2.1 집합부 작용력

그림 2.2에서는 환하중을 받는 복합구조의 모델을 보여주며 집합부에 의력이 작용할 경우 집합부 내부에 생기는 부재력은 그림 2.3 (a)와 같이 보에 작용한 모멘트는 압축축 및 인장축 보 플랜지에 의해 균일하게 전달된다고 가정하면 그림 2.3 (b)와 같이 모델링할 수 있다.

![그림 2.2 환하중을 받는 복합구조]

(a) 접합부에 작용하는 부재력

(b) 절모멘트의 모델링

그림 2.3 접합부에 작용하는 절의 모델링
2.2.2 보 관통형식

1) 응력전달요소

(1) 막음판
막음판은 접합부의 콘크리트 타설시 형틀 역할 및 후프근의 역할을 하는 구성요소로서 그림 2.1 (1),(9)에 나타나 있다. 또한 접합부 콘크리트를 구속하는 효과와 기둥주근의 정착성능을 향상시키는 효과가 있으며, 이의 응력전달기구는 그림 2.4와 같다.

(2) 지압저항요소
접합부의 철골과 콘크리트의 접촉면에는 지압(支壓)이 발생한다. 접합부의 지압내력을 향상시키는 요소로는 지압판, 지압기둥, 스텐드, 연직보강근 등이 있으며, 그림 2.1 (3),(4),(7)에 나타나 있다.

지압판은 보 플랜지 사이에 설치되는 스탠드로서 보 플랜지의 응력을 보쪽 안쪽에 있는 콘크리트에 전달하는 요소로서, 콘크리트를 구속하는 효과도 있다.

지압기둥, 스텐드, 연직보강근은 보 플랜지 외면에 설치되는 저항요소로서 보 플랜지의 응력을 보쪽 바깥쪽에 있는 콘크리트에 전달한다. 이중에 보 플랜지 외면에 설치된 지압저항 요소들은 콘크리트에 대한 전단저항 요소로도 작용한다.

지압저항요소의 응력전달기구는 그림 2.5, 2.6, 2.7에 나타나 있다.

그림 2.4 막음판의 응력전달기구
(3) 직교보
직교보는 십(十)자형 접합부의 내부로서 서로 직교하는 보를 의미한다.
이 보는 상대측 보에 대해 회전거한 및 정착 요소가 되며 지압내력과 전
단내력을 향상시키는 효과가 있으나, 직교보에 의해 접합부의 변형이 더욱
커짐수가 있으므로 커버플레이트나 전단보강근등의 적절한 황보강이 필요하
다. 직교보의 역할 중 지압저항 요소로서의 지압저항기구는 그림 2.8과 같
다.
그림 2.7 연직보강근의 응력전달기구

그림 2.8 접합부의 응력전달기구
2.2.3 기둥 관통형식

1) 응력전달요소

(1) 정착철물

정착철물은 접합되는 보들의 플랜지부를 연결시켜 주는 요소로서 그림 2.1 (5)에 나타나 있다. 보 플랜지의 응력은 정착철물의 돌출부분이나 직교방향 철물에 의한 지압력으로 전달되며, 이 때 콘크리트 파괴 방지를 위하여 구속 틀을 설치하거나 전단보강근을 배근한다. 정착철물의 응력전달기구는 그림 2.9와 같다.

(2) 중판

중판은 접합되는 보들의 플랜지 및 웨브를 연결시켜주는 요소로서 그림 2.1 (8)에 나타나 있다. 이 요소는 보 플랜지의 응력을 전달할 뿐 아니라 보 웨브의 역할을 하여 전단력도 전달한다. 이 구성요소는 콘크리트의 중전성 이 좋은 특징이 있으며, 응력전달기구는 그림 2.10과 같다.

그림 2.9 정착철물의 응력전달기구
(3) 다이아프램

다이아프램은 접합되는 보들의 플랜지들 연결시켜주는 요소로서 정착철물과 같은 작용을 하며, 막음판과 함께 구성되는 것이 특징으로 그림 2.1 (9),(10)에 나타난다. 여기서 보 플랜지의 움직임은 다이아프램을 통하여 막음판이 전단력으로 전달된다. 이 구성요소는 움직임이 복잡한 반면 콘크리트의 충전성이 좋지 않아 다이아프램의 움직임전달기구는 그림 2.11과 같다.

(4) 경사 스티프너

경사스티프너는 보 플랜지의 움직임을 막음판에 전달시켜주는 매개체 역할을 하는 요소로서 그림 2.1 (8)에 나타난다. 이 요소는 전단내력이 좋은 특징이 있으며, 움직임전달기구는 그림 2.12와 같다.
그림 2.11 다이아프램의 응력전달기구

그림 2.12 경사스티프너의 응력전달기구
2.3 설계지침

2.3.1 적용범위

미국의 ASCE 설계지침(2)은 주로 Sheikh·Deierlein 등(4)(6)의 실험결과를 기초로 복합구조로 구성된 접합부의 모멘트 저항 구조 시스템을 위한 것으로 적용범위를 다음과 같이 정하고 있다.

(1) 적용하중은 고정하중, 격재하중, 풍하중, 지진하중 등 모든 하중에 적용가능하나 충분히 되풀이하여 하중을 가할 데이터가 아니기 때문에 지진하중에 대하여는 지진위험도가 낮거나 중간 정도의 지역에 적용을 한정하고 있다.

(2) 접합부 상세는 대개 + 자형이기 때문에 + 자형 · T자형의 한정하고, L자형(최상층 코너) · T자형(최상층 내부)은 적용범위 밖으로 하고 있다.

(3) 접합부 형상비를 0.75 ≤ 기둥높이/보높이 ≤ 2.0으로 하고 있다.

(4) 재료강도는 다음 강도 이하로 한정하고 있다.
 · 콘크리트 강도 408 kg/cm² 이하
 · 철근 향봉강도 4.2 t/cm² 이하
 · 철공 향봉강도 3.5 t/cm² 이하

(5) 콘크리트를 원활하게 턱실하기 위한 시공성을 고려하여 철공 보의 폭은 기둥 폭의 1/2 보다 작아야 한다.

2.3.2 접합부 상세

이 지침이 적용되는 접합부는 지압판(FBP), 연장 지압판(E-FBP), 문합 철공 기둥, 연직보강근 등을 기본으로 하여 이루어지며 그 상세는 그림 2.14와 같다. 여기에서 지압판은 보 풀찬지 사이에 설치되는 스티프너로 접합부에서 기둥으로 모멘트를 전달하기 위하여 보 축이나 풀찬지 폭 이상으로 반드시 설치하는 것으로 하고 있다.
2.3.3 결합부에 작용하는 부재력

결합부에 작용하는 부재력은 그림 2.14와 같으며, 이와 같은 내력 분포에서 평형조건은

\[\sum M_c = \sum M_b + V_b h - V_c d \] \hspace{1cm} (2.1)

으로 주어진다. 여기에서

\[\sum M_b = (M_{b1} + M_{b2}) \] \hspace{1cm} (2.2)
\[V_b = \frac{(V_{b1} + V_{b2})}{2} \]
\[V_c = \frac{(V_{c1} + V_{c2})}{2} \]
\[\sum M_c = (M_{c1} + M_{c2}) \] \hspace{1cm} (2.3)

의 식으로 계산된다.
2.3.4 파괴모드

접합부의 파괴모드로서는 전단파괴와 지압파괴로 크게 구별되고, 부착파괴모드는 고려되고 있지 않으며, 주근의 부착내력이 부착면적 중대로부터 충분히 확보되는 경우에 따른다. 따라서 부착파괴는 일어나지 않는 경우로 계획되고 있다. 그림 2.15에 기둥 관통형식 접합부의 두 가지 파괴형식이 나타나 있다.

그림 2.14 접합부에 작용하는 부재력

(이미지 설명: 접합부의 관통 형식과 부착 내력)

그림 2.15 기둥 관통형식 접합부의 파괴형식

(a) 전단파괴모드 (b) 지압파괴모드
2.3.5 접합부 유효폭

복합구조 접합부는 철골 보의 폭과 콘크리트 기둥의 폭이 다르기 때문에 평면적이 아닌 삼차원적인 변형이 발생하게 된다. 이러한 변형에 따라 접합부 변형도 접합파괴모드와 지압파괴모드로 서로 다르게 나타나며, 이들 파괴 유형을 고려하기 위하여 삼차원적인 거동을 하는 콘크리트 기둥 내·외부 요소에 대한 유효폭의 계산이 필요하다. 접합부의 유효폭은 그림 2.16 및 식 (2.4)에 의해 산정하고, 접합부 상세에 따라서 변화하는 것으로 되어 있으며, 일본건축학회의 보-기둥 혼합구조 설계지침\(^{(13)}\)에서의 유효폭은 대부분의 복합구조 접합부에서 기둥 폭의 1/2 혹은 기둥 폭과 보 폭 합의 1/2로 주어지고 있다.

\[
b_f = b_i + b_o \tag{2.4}
\]

여기서, \(b_f\)는 접합부 유효폭이고 \(b_i, b_o\)는 각각 내, 외부 패널폭으로

\[
b_o = C (b_m - b_i) < 2d_o \tag{2.5}
\]

의 식으로 산정되며, 여기서 \(d_o\)는 연장 지압판에서의 추가되는 충이고 \(b_m\)은 접합부 최대 유효폭으로

![그림 2.16 접합부 유효폭](image)

(a) 연장지압판 (b) 확대지압판
\[b_m = \frac{(b_f + b)}{2} < b_f + h < 1.75b_f \]
\[C = \frac{x}{h}(y/b_f) \]

이다. 식 (2.6)에서 연장지압판이 있는 경우 \(x = h \)이다.

2.3.6 지압내력산정법

식 (2.4)로 계산되는 보의 유효폭은 접합 상세에 따라 변하여, 지압내력도 유효폭의 크기에 따라 변화한다. 복합구조의 지압내력은 보와 기둥 사이에 전달되는 모멘트와 전단력의 조합 효과에 의한 것으로 식 (2.7)을 만족할 때 적합하다고 규정하고 있으며, 다음과 같이 나타낼 수 있다.

\[\sum M_c + 0.35h \Delta V_b \leq \varnothing [0.7hC_{cn} + h_{ur}(T_{urn} + C_{urn})] \quad (2.7) \]

여기서, \(\sum M_c \)는 그림 2.3에 표시된 바와 같이 접합부의 기둥 상하단에 작용하는 보멘트의 합으로 식 (2.3)에 의하여 계산되는 값이다. \(\Delta V \)는 접합부의 보 양단에 작용하는 전단력의 차로

\[\Delta V_b = V_{b2} - V_{b1} \quad (2.8) \]

이 되며, \(\varnothing \)는 하중저항계수 설계법에 의한 설계에서 강도저감계수로, 여기서는 0.7의 값이 가진다. \(C_{cn} \)은 지압면적 \(a_c \times b_f \)와 플랜지 상하단의 지압강도 \(f_c' \)의 곱으로

\[C_{cn} = 0.6f_c'b_fh \quad (2.9) \]

의 식으로 산정되며, \(h_{ur} \)은 접합부 수직절률 사이의 거리이고, \(T_{urn} \)과 \(C_{urn} \)은 각각 접합부 수직절률의 공칭안전강도와 공칭압축강도로 그 합의 최대값은

\[T_{urn} + C_{urn} \leq 0.3f_c'b_fh \quad (2.10) \]

의 값 이하로 하고 있다.
2.3.7 전단내력 산정법

전단내력은 접합부 구성 요소 중 강재 요소를 기준으로 내부 콘크리트의 압축대와 바깥 콘크리트의 압축장 및 철골 웨브의 전단내력의 합으로 산정하며,

\[\sum M_c - V_{mh}h \leq \varnothing \left[V_{ordf}d_f + 0.75V_{ordw}d_w + V_{ord}(d + d_c) \right] \] \hspace{1cm} (2.11)

의 식을 만족할 때 적절한 것으로 규정되어 있다. 이 식에서 \(jh \)는 접합부 유효가로길이로서

\[jh = \frac{\sum M_c}{\varnothing (T_{vm} + C_{vm} + C_c) - \Delta V_y/2} \geq 0.7h \] \hspace{1cm} (2.12)

의 식으로 산정하며, \(C_c \)는 수직지압력으로서

\[C_c = 2f'_c b_p \varnothing \] \hspace{1cm} (2.13)

으로 계산된다. 앞 식에서 \(a_c \)는 콘크리트 압축력의 길이로서

\[a_c = \frac{h}{2} - \sqrt{\frac{h^2}{4} - K} \leq 0.3h \] \hspace{1cm} (2.14)

의 값으로 하며, 앞 식에 사용된 값 \(K \)는 다시

\[K = \frac{1}{\varnothing 2f'_c b_f} \left[\sum M_c + \Delta V_y h/2 - \varnothing (T_{vm} + C_{vm}) h_w \right] \] \hspace{1cm} (2.15)

의 식을 사용하여 계산된다. 식 (2.11)에서 \(d_f \)는 보 플랜지의 중심간 거리, \(d_w \)는 보 웨브의 중, \(d \)는 철골보의 중을 나타낸다.

(1) 내부 콘크리트 전단내력

내부 콘크리트 전단내력(\(V_{con} \))은

\[V_{con} = 1.7\sqrt{f'_c b_p h} \leq 0.5f'_c b_g d_w \] \hspace{1cm} (2.16)

의 식으로 산정하며, 여기서 \(b_g \)는 지압판 폭으로

\[b_g \leq b_f + 5t_p \leq 1.5b_f \] \hspace{1cm} (2.17)

의 값으로 한정한다. 식 (2.16)에서 \(f'_c \)의 단위는 kg/cm\(^2\)이며, \(V_{con} \)의 단위는...
kg이다.

(2) 외부 콘크리트 전단내력

외부 콘크리트 전단내력 \(V_{cn} \)은 콘크리트에 의한 전단강도 \(V'_{c'} \)와 전단보강근에 의한 전단강도 \(V'_{s'} \)의 합으로 계산되며 그 최대값은

\[
V_{cn} = V'_{c'} + V'_{s'} \leq 1.7 \sqrt{f'_{c'}} b_d h
\]

(2.18)

의 값 이하로 한다.

(3) 철골 웨브 전단내력

철골 웨브 전단내력 \(V_{sn} \)은

\[
V_{sn} = 0.6F_{ywp} t_{wp} h
\]

(2.19)

로 산정하며, 여기서 \(F_{ywp} \)는 웨브 패널의 합복강도이고, \(t_{wp} \)는 웨브 패널의 두께이다.
제 3 장 복합구조 접합부 형식

3.1 구성요소

이 연구에서 개발중인 복합구조 접합부는 표 3.1과 그림 3.1에 나타난 바와 같이 네 개의 T 형강을 강봉으로 연결하여 네자 형태를 이루는 형식이다. 이 때 직교하는 강봉의 수평위치가 맞도록 한 방향으로는 결합된 강봉을 사용하여 이를 직교 부분의 연결판과 용접한다. 보의 플랜지와 T 형강의 접합에는 T형 강을 사용하고 T 형강에 용접된 전단접합판으로 보의 웨브를 연결시키며 접합부의 일체성을 위하여 접합부 모서리를 T형 강으로 용접한다. 여기서 보 플랜지에서 T형강으로 전달되는 힘의내력을 지지하기 위하여 T형강에 스티프너를 보강한다.

3.2 형식 설계

3.2.1 보의 최대 허용내력 산정

접합부에 작용하는 힘모멘트는 보의 상·하부 플랜지의 인장 및 압축력에 의하여 접합부에 전달되고, 보에 작용하는 전단력은 보의 웨브를 통하여 접합부에 전달된다고 가정할 때 접합부에 작용하는 내력은 식 (3.1) 및 (3.2)로 산정할 수 있다. 이 연구에서는 일반적으로 설계에서 사용되는 빈도를 고려하여 SS 400 체질의 H-500×200×10×16의 보를 대상으로 한다.

표 3.1 복합구조 형식의 구성요소

<table>
<thead>
<tr>
<th>요소</th>
<th>사용 부재</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>T 형강</td>
<td>T-150×300×10×15</td>
<td></td>
</tr>
<tr>
<td>연결재</td>
<td>Ø 32 mm 고강도 강봉</td>
<td>보 H형강 플랜지의 최대 허용 인장력 이상으로 설계</td>
</tr>
<tr>
<td>전단접합판</td>
<td>PL 9 강판</td>
<td>보의 전단력 전달</td>
</tr>
<tr>
<td>L-100×100×10</td>
<td>후프근 역할과 접합부 일체성을 높임</td>
<td></td>
</tr>
<tr>
<td>L-130×130×12</td>
<td>보 H형강과 접합부 T형강 연결</td>
<td></td>
</tr>
<tr>
<td>L-150×150×15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
그림 3.1 T형강을 사용한 복합구조 접합부

접합부에 작용하는 최대 하용인장력 \((T_{con})_{max}\)은 보 폴란지 내력의 100 피센트로 가정하면

\[
(T_{con})_{max} = A_f \times f_t
\]

이며, 여기서 \(A_f\)는 철골 보 폴란지 단면적, \(f_t\)는 하용인장용력도이고, 접합부에 작용할 수 있는 최대 하용원모멘트 \((M_{con})_{max}\)는

\[
(M_{con})_{max} = (T_{con})_{max} \times (h - l_f)
\]

의 식으로 계산된다.

3.2.2 강봉

강봉은 보의 폴란지에서 전달되는 식 (3.1)에 의하여 산정된 인장력의 지지할 수 있게 하므로 강봉의 단면적 \((A_{root})\)은
\[A_{rod} = \frac{A_f \times F_y}{F_{y,rod}} \]

(3.3)

으로 계산되는 값 이상의 단면적을 가지도록 설계한다. 식 (3.3)에서 \(F_{y,rod} \)는 강봉 항복강도이고, 이 연구에서는 강봉의 크기가 커지면 시공성에 있어 접합용 \(\gamma \) 형강과의 간결 등 문제점이 발생할 수 있어 강봉의 개수를 두 개로 하여 하나의 강봉이 부담하는 인장력을 적게 할 수 있도록 강봉의 지름을 작게 한다.

3.2.3 \(\gamma \) 형강

\(\gamma \) 형강은 보 플랜저에 발생하는 횡인장력을 접합부의 강봉에 전달하는 역할을 한다. 이 때 강봉과 보 플랜저와의 편심에 의해 발생하는 모멘트에 대해 횡 저항성능을 향상시키도록 스티프너로 보강한다. 스티프너 보강된 \(\gamma \) 형강의 단면은 그림 3.2와 같이 \(T \) 형이 되며 그 단면성능은 혼공식

\[Z_c = \frac{I}{y_c}, \quad Z_t = \frac{I}{y_t} \]

(3.4)

에 의해 계산된다.

그림 3.2 스티프너 보강된 \(\gamma \) 형강의 예
3.2.4 보 플랜지와 \(\rightarrow \) 형강 용접

\(\rightarrow \) 형강과 보 플랜지의 용접면에는 강봉 인장력 중심과의 편심으로 인하여 청모멘트가 발생한다. 보 플랜지와 \(\rightarrow \) 형강의 용접면은 모라율-Encoding으로 하여 그림 3.3과 같이 용접면에는 청모멘트에 의한 측방향응력과 전단력에 의한 전단응력이 발생하므로 이를 지지하기 위한 용접 설계는 이 두 응력에 의한 조합응력으로 하여 실험값과 비교하기 위하여 단기하중에 대하여 검토 한다.

\[
\sigma_e = \sqrt{\left(\frac{M}{Z}\right)^2 + \left(\frac{P}{A_e}\right)^2} \leq \frac{2f}{\sqrt{3}} \text{ t/cm}^2
\] (3.5)

여기서, \(\sigma_e \) = 청모멘트와 전단력에 의한 조합응력, t/cm²
\(M \) = 강봉에 작용하는 편심력에 의한 모멘트, t \cdot cm
\(Z \) = 유효목두께 \(a \)를 용접면에 전개하여 얻는 도형의 단면계수, cm³
\(A_e \) = 용접부 유효단면적, cm²

![Diagram](image)

(a) 용접치수
(b) 용접단면상세도

그림 3.3 H 형강에 용접된 \(\rightarrow \) 형강의 용접치수

- 23 -
(1) 용접목두께

그림 3.3 (a)에서 보이는 바와 같이 철골 보 플랜지와 그 형강의 용접은
그 형강의 두개만을 용접할 수 있는 보 길이 방향 용접면과 그 형강의 구부
을 가지고 있는 그 형강의 두개만을 용접할 수 없는 보 길이 방향에 수직한
용접면의 용접목두께(s)를 달리 산정해야 한다. 따라서, 보 길이 방향 용접
면의 용접목두께(s1)는 그 형강의 두개로 하고 보 길이 방향에 수직한 용접
면의 용접목두께(s2)는 그 형강의 구불반경으로 한다.

(2) 유효목두께

유효목두께(a)는 (1)에서 산정한 용접목두께에 0.7을 곱한

\[a = 0.7s \] \hspace{1cm} (3.6)

의 식으로 산정하며, 용접목두께 s1과 s2에 따라 각각 a1과 a2로 한다.

(3) 유효용접길이

유효용접길이(l_e)는 그림 3.3 (b)의 용접단면상세도에서 보이는 것처럼 용
접이 그 형강의 삼면을 둘러싸여 있기 때문에 보 길이 방향의 용접에 대해
서는 전용접길이(l_t)에서 유효목두께를 뺀 값을 산정하고 보 길이 방향에
수직한 용접면에 대해서는 전용접길이(l_t)로 하여

\[l_{e1} = l_1 - a_1 \]
\[l_{e2} = l_2 \] \hspace{1cm} (3.7)

의 식으로 산정한다.

(4) 유효단면적

유효단면적(A_e)은 유효목두께 a와 유효용접길이 l_e의 곱으로 나타낼 수 있
으므로

\[A_e = a \times l_e \] \hspace{1cm} (3.8)

의 식에서 l_{e1}과 l_{e2}에 대해 산정한 A_{e1}과 A_{e2}의 합으로 한

\[A_e = A_{e1} + A_{e2} \] \hspace{1cm} (3.9)
의 식으로 계산한다.

(5) 용접내력의 산정

그림 5.2 (b)의 용접단면에 대해 산정한 용접도심에 대해 용접단면의 단면 이차모멘트와 식 (3.4)의 활공식을 사용하여 계산한 단면계수를 식 (3.5)에 대입하여 산정하며, 식 (3.5)에서의 활공력은 금형의 최대 활공력 단면면의 하부면에서 3.5 cm의 높이에서 용접내력을 산정한다. 금형 용접면의 산정된 용접내력은 표 3.2와 같다.

<table>
<thead>
<tr>
<th>용접내력</th>
<th>L - 130 × 130 × 12</th>
<th>L - 150 × 150 × 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>용접폭두께 (cm)</td>
<td>s₁</td>
<td>1.20</td>
</tr>
<tr>
<td></td>
<td>s₂</td>
<td>0.85</td>
</tr>
<tr>
<td>유호폭두께 (cm)</td>
<td>a₁</td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td>a₂</td>
<td>0.60</td>
</tr>
<tr>
<td>유호용접길이 (cm)</td>
<td>L₁</td>
<td>11.66</td>
</tr>
<tr>
<td></td>
<td>L₂</td>
<td>17.00</td>
</tr>
<tr>
<td>유호단면적 (cm²)</td>
<td>A₁</td>
<td>19.59</td>
</tr>
<tr>
<td></td>
<td>A₂</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>Aₑ</td>
<td>29.79</td>
</tr>
<tr>
<td>용접면 도심 (cm)</td>
<td></td>
<td>4.33</td>
</tr>
<tr>
<td>단면이차모멘트 (cm⁴)</td>
<td></td>
<td>474.28</td>
</tr>
<tr>
<td>단면계수 (cm⁴)</td>
<td>인장측</td>
<td>109.53</td>
</tr>
<tr>
<td></td>
<td>압축측</td>
<td>59.81</td>
</tr>
<tr>
<td>용접내력 (t)</td>
<td></td>
<td>20.54</td>
</tr>
</tbody>
</table>
제 4 장 철 저항성능 시험

4.1 개 요

이 연구에서 개발중인 접합부 형식은 전달되는 보의 두께를 중 현모멘트는 보 플랜지에서 발생하는 핫인장력이 플랜지에 용접된 그 형강을 통해 강봉으로 전달되고 전단력은 보 웨브에 접합되는 전단접합판을 통해 접합부내 저압저항으로 지지된다. 이 연구에서는 보의 핫인장력 전달 과정에 있는 각 요소와 이들 용접 부위의 핫 전달 및 저항성능을 시험을 통하여 확인하고자 한다.

4.2 시험체의 계획 및 형태

시험체는 3 장에서 고안한 복합구조 형식의 접합부 중 SS 400 재질의 철골 보(H=500×200×10×16)의 플랜지에 그 형강을 용접한 형태로 제작하였다. 이 때 시공시 기둥 T형강에 전단접합판이 용접되어 보를 접합할 때 생기는 톨새를 고려하여 그 형강을 플랜지에서 5 mm 밖 더 내어서 용접하였다.

시험체의 주요 실험 변수는 다음과 같다.

(1) 그 형강의 크기 : L-130×130×12, L-150×150×15
(2) 스티프너의 두께 : 9 mm, 12 mm 및 16 mm

각 조건마다 시험체를 각각 두 개씩 제작하여 모두 일두 개의 시험체를 제작하였다. 여기서 여섯 개는 L-130×130×12를, 나머지 여섯 개는 L-150×150×15를 보 플랜지에 그 형강 두께만큼 용접하였다. 그 형강에서 영접 내력은 저지하기 위한 충분한 형 저항성능을 얻기 위해서 스티프너 보강을 하였다. 이렇게 제작된 보강 스티프너의 형 저항성능을 알아보기 위하여 각 그 형강마다 두께 9 mm, 12 mm, 16 mm의 스티프너를 용접하여 스티프너의 높이에 대한 단면의 변화에 따른 형 저항성능 시험을 하였다.

모든 시험체에 대하여 스티프너의 용접시 강봉의 접합을 위한 웨셔(Ø65)
의 두께를 고려하여 스티프너의 전 구간을 같은 두께로 용접할 수 없어 구간을 분리하여 고려하였다. 보강 스티프너의 용접 구간중 Ø36의 구멍 수직 위치 부분은 그 형강이 L-130×130×12인 경우 8 mm, L-150×150×15인 경우 10 mm로 용접하였고 나머지 부분은 최대의 용접력을 가질 수 있게 스티프너의 두께만큼 용접하였다.

그 형강과 보 폴렌지가 용접되는 부분은 보 길이방향으로 최대 15 mm 이상을 용접할 수 없으므로 어느 경우에도 보 폴렌지의 최대 인장 내력에 도달하기 전에 그 형강의 용접부위나 보강된 스티프너에서 파괴가 일어날 것으로 예상되어 용접을 최대 두께로 하여 그 형강의 두께만큼 용접하였고, 보 길이 수직방향으로는 시공상 그 형강 두께만큼 용접할 수 없으므로 그 형강의 국물변경 만큼만 용접되는 것으로 하였다. 또한 보 폴렌지의 국부 지압 파괴를 막기 위하여 단부에 PL 9 mm 스티프너를 보에 용접하였다.

시험체 일람은 표 4.1에 나타낸 바와 같고 그림 4.1에서는 보강된 스티프너의 상세를 나타내었으며, 시험체의 형태 및 크기는 그림 4.2에 나타낸 바와 같다.

(a) AL 시험체 (b) BL 시험체

그림 4.1 스티프너 상세
4.2.1 ㄱ형강에 보강된 스티프너의 단면성능

ㄱ형강에 보강된 스티프너의 두께에 따른 단면성능은 식 (3.4)에 의해 산정되며 이에 따라 시험체별 단면계수를 산정하면 표 4.1과 같다.

표 4.1 시험체 일람표 및 보강 스티프너 단면계수

<table>
<thead>
<tr>
<th>시험체명</th>
<th>주간</th>
<th>보강 스티프너</th>
<th>ㄱ형강에 보강된 스티프너의 단면계수 (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>번수</td>
<td></td>
<td>압축측</td>
</tr>
<tr>
<td>AL 1-1,2</td>
<td></td>
<td>PL 9</td>
<td>135.2</td>
</tr>
<tr>
<td>AL 2-1,2</td>
<td>L-130×130×12</td>
<td>PL 12</td>
<td>144.6</td>
</tr>
<tr>
<td>AL 3-1,2</td>
<td></td>
<td>PL 16</td>
<td>155.0</td>
</tr>
<tr>
<td>BL 1-1,2</td>
<td></td>
<td>PL 9</td>
<td>184.7</td>
</tr>
<tr>
<td>BL 2-1,2</td>
<td>L-150×150×15</td>
<td>PL 12</td>
<td>198.5</td>
</tr>
<tr>
<td>BL 3-1,2</td>
<td></td>
<td>PL 16</td>
<td>212.6</td>
</tr>
</tbody>
</table>

시험체에 사용된 기호는 다음과 같다.

AL 1 - 1

시험체 번호
스티프너 크기 (1: PL 9, 2: PL 12, 3: PL 16)
ㄱ형강 크기 (AL: L-130×130×12,
BL: L-150×150×15)
(b) BL 시험체

그림 4.2 시험체의 형태 및 크기
4.3 사용 재료 및 시험체 제작

시험체의 제작에 사용된 철골 보는 SS 400 재질의 H 형강이고, 사용된 강봉은 지름 32 mm의 \(f_p = 9.5 \) t/cm\(^2\)의 고강도 강봉으로서 긴장 원고치인 인장강도 89 t의 55 퍼센트가 49 t으로 보 폴렌지의 인장력을 지지하기 위하여 고강도 강봉 두 개를 사용하였다.

표 4.2에 사용한 강봉의 기계적 성질을 나타내었으며 시험체의 용접두께를 정확히 유지 및 측정하기 위하여 용접 두께를 측정할 수 있는 용접 게이지 를 제작하여 사용하였다. 사전 4.1에 측정 사진을 보여주고 있다.

<table>
<thead>
<tr>
<th>공칭지름 (mm)</th>
<th>단위무게 (kg/m)</th>
<th>공칭 단면적 (mm(^2))</th>
<th>항복강도 (t/cm(^2))</th>
<th>인장강도 t/cm(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>6.64</td>
<td>804</td>
<td>9.5</td>
<td>11</td>
</tr>
</tbody>
</table>

4.4 가력 및 측정

200 t 용량의 만능구조시험기로 시험체에 직접 인장력을 가하기 위하여 그림 4.4와 같은 보조장치를 사용하였으며, 이 보조장치는 시험체의 최대 예상 설계 내력을 지지할 수 있도록 F10 T M 22 고력볼트 8 개를 사용하여 긴밀 하였다. 실제 설치된 시험체의 전경은 사전 4.2에 나타나 있다.

가력은 만능구조시험기를 통하여 하중계어 방식으로 제어하였으며, 시험체의 용접내력을 고려하여 탄성거동과 더불어 소성거동도 같이 관찰할 수 있도록 처음 30 t까지 가력한 다음 30 t에서 70 t까지 10 t 간격으로 증가시키면서 가력 및 제하를 반복하였다.
사진 4.1 용접계이지를 이용한 용접 두께 확인

시험체에는 총모멘트 전달 및 지지성능을 알아보기 위하여 그림 4.3에 보이는 바와 같이 모두 9 개의 변형도계이지를 부착하였다. 변형도계이지는 시험체에서 SG의 약자로 표시되어 있다.

먼저 그 형강의 횡 저항성능을 알아보기 위하여 스티프너의 단면위치에 따라 최대 총모멘트가 발생하는 단면에 SG 1(또는 SG 4)을, 강봉의 인장력 중심 단면에 SG 2(또는 SG 5)를, 스티프너 상부면에 SG 3(또는 SG 6)을 부착하였고, 보 풍부지에 발생한 횡인장력이 이에 응집된 그 형강에 전달되는 과정을 알아보기 위하여 SG 7(또는 SG 8)과 SG 9를 부착하였다.

시험에서는 부착된 변형도계이지에서 측정된 변형도 값이 정적변형도측정 기(TDS - 302)를 통하여 컴퓨터로 자동으로 저장되도록 하였다.
실제 접합부에서는 \(\Gamma \) 형강이 기둥 \(\Gamma \) 형강에 분리로 연결되어 변위가 구속되나 시험에서는 \(\Gamma \) 형강이 보조장치에 밀착시 변력이 생기는 것을 방지하기 위하여 보조장치와 시험체 \(\Gamma \) 형강과의 사이를 약 30 mm 정도 떨어 \(\Gamma \) 형강의 변위를 구속하지 않았다.

(a) 정면도
(b) 측면도

그림 4.3 변형도계지 위치도
(a) 정면도
(b) 좌측면도

사진 4.2 설치된 시험체 전경
제 5 장 실험결과 및 분석

5.1 파괴상황

시험체의 파괴 형태는 시험체의 변수인 \(\gamma \) 형강의 크기나 스티프너의 두께에 큰 영향을 받지 않은 것으로 나타났으며 유형별로는 크게 두 가지의 경우로 나타났다.

첫째는, AL 2-2, BL 3-1 시험체의 경우로서 파괴 후 충격하중과 파다한 응력 집중으로 \(\gamma \) 형강 목부위가 파탄된 경우로 사진 5.2에 나타나 있다. 이 경우는 스티프너의 용접력이 \(\gamma \) 형강과 보 플랜지 사이의 용접력보다 작은 경우로 생각되며 실제 파괴형태로 \(\gamma \) 형강과 보 플랜지 용접면에는 아무런 변화가 없었다.

둘 번째는, 대부분 시험체의 경우에서 발생한 경우로 사진 5.3 및 5.4에서 보는 바와 같이 \(\gamma \) 형강과 보 플랜지 용접부위에서 파괴가 일어난 경우로서 이때 \(\gamma \) 형강 스티프너 위치가 들뜨는 현상이 발생하였으며 시험체에 따라 용접면이 완전히 취성파괴된 경우와 일부만 취성파괴된 경우가 있었으나, 모든 시험체에서 스티프너 자체의 파괴는 일어나지 않았다.

대부분 시험체에서 발생한 두 번째 유형의 파괴 형태를 살펴보면 고강도강봉을 통한 입장력의 전달은 \(\gamma \) 형강 스티프너 위치가 들뜨는 현상에서 응력의 전달이 스티프너를 통하여 효과적으로 전달되고 있으며, 시험체의 용접면 취성파괴 형태를 통하여 응력이 보와 수직한 용접면으로 집중적으로 전달되고 있음을 알 수 있다.

또 시험에서는 작용웅장력에 대해 \(\gamma \) 형강의 수직 변위가 구속되지 않았기 때문에 고강도강봉이 휘어지는 현상이 관찰되었으며, 이는 사진 5.1에 잘 나타나 있다. 실제 접합부에서는 \(\gamma \) 형강이 기둥의 \(T \) 형강에 의해 변위가 구속되어 더 큰 내력은 가질 수 있을 것으로 판단되므로 시험체의 최대내력값은 실제 접합부로 고려할때 안전성으로 생각된다.
5.2 최대 내력

시험체의 응력 전달은 보의 플랜저에서 발생한 원인장력이 플랜저에 응집된 스티프너 보강 이 형상을 통해 강봉으로 전달되고 최대 내력은 전달 요소의 내력 중 가장 작은 응집력에 의하여 결정됨이 확인되었다.

 이를 확인하기 위하여 표 5.1과 그림 5.1에서 시험체별 최고하중과 응집내력을 비교하였다. 여기에서 시험체별 최고하중(P_{max})과 항복응집내력(P_{allow}) 비는 AL 시험체에서 평균 2.1, BL 시험체에서 평균 2.2 정도로 큰 내력을 발휘하는 것으로 나타났으나 시험체의 파괴가 응집에 의한 취성 파괴로 나타났으므로 부재의 응집력 특성 주의하여야 할 것으로 여겨진다.

표 5.1 시험체별 최고하중

<table>
<thead>
<tr>
<th>최고하중</th>
<th>실험체명</th>
<th>AL1</th>
<th>AL2</th>
<th>AL3</th>
<th>BL1</th>
<th>BL2</th>
<th>BL3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{max} (t)</td>
<td></td>
<td>41.6</td>
<td>40.2</td>
<td>59.6</td>
<td>49.6</td>
<td>29.4</td>
<td>41.9</td>
</tr>
<tr>
<td>P_{allow} (t)</td>
<td></td>
<td>20.5</td>
<td>31.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P_{\text{max}}/P_{\text{allow}}$</td>
<td>2.0</td>
<td>2.0</td>
<td>2.9</td>
<td>2.4</td>
<td>1.4</td>
<td>2.0</td>
<td>1.9</td>
</tr>
</tbody>
</table>

표 5.2 SG 7과 SG 9의 변형도 비교

<table>
<thead>
<tr>
<th>시험체명</th>
<th>변형도계거치 번호</th>
<th>SG7 ($\times 10^3$)</th>
<th>SG9 ($\times 10^3$)</th>
<th>SG7/SG9</th>
<th>평균</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>1</td>
<td>1265</td>
<td>414</td>
<td>3.0</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>739</td>
<td>375</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>700</td>
<td>388</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>814</td>
<td>367</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>410</td>
<td>237</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>BL</td>
<td>1</td>
<td>676</td>
<td>383</td>
<td>1.8</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>497</td>
<td>278</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>400</td>
<td>133</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>494</td>
<td>311</td>
<td>1.6</td>
<td></td>
</tr>
</tbody>
</table>

- 38 -
5.3 힘의 전달 경로

보플랜지에서 ㄱ형강으로의 힘의 전달과정을 알아보기 위하여 탄성범위로 판단되는 30 t 이력에서의 SG 7과 SG 9의 변형도를 비교하였으며 이는 표 5.2와 그림 5.2와 같다. 여기에서 ㄱ형강 하부면의 변형도 SG 7의 값이 보플랜지면 변형도 SG 9보다 약 2배 정도 크게 나타났으며, 이는 ㄱ형강의 가력 위치와 H형강 플랜지간의 편심에 의해 ㄱ형강 하부에서는 힘인장력과 전단력의 조합응력이, H형강 플랜지에는 힘인장력만이 발생하였기 때문에로 여겨진다.

(a) AL 시험체

(b) BL 시험체

그림 5.1 시험체별 최고하중과 용접내력

- 39 -
(a) AL 1-1 시험체

(b) AL 1-2 시험체

그림 5.2 SG 7과 SG 9의 하중-변형도 곡선(계속)
그림 5.2 SG 7과 SG 9의 하중-변형도 곡선(계속)
(e) AL 3-1 시험체

(f) AL 3-2 시험체

그림 5.2 SG 7과 SG 9의 하중-변형도 곡선(계속)
(g) BL 1-1 시험체

(h) BL 1-2 시험체

그림 5.2 SG 7과 SG 9의 하중-변형도 곡선(계속)
(i) BL 2-1 시험체

(j) BL 2-2 시험체

그림 5.2 SG 7과 SG 9의 하중-변형도 곡선
5.4 - 형강의 휘저항성능

스티프너 보강된 하 형강의 휘저항성능을 알아보기 위하여 시험체의 최대 가력대중에 의한 최대 휘모멘트 발생단면인 SG I 위치서에서의 휘모멘트 (M_y)를 스티프너 보강하지 않았을 경우의 g 형강 항복모멘트(M_n), g 형강과 보 플랜지 용접내력에 의한 항복모멘트(M_w), AL 시험체와 BL 시험체에서 가장 단면성능이 작은 시험체 각 g 형강에 대해 최소 스티프너 보강된 g 형강 단면의 항복모멘트(M_r)와 비교하여 표 5.3에 나타내었다.

여기서 스티프너 보강되지 않았을 경우 g 형강의 내력은 극히 작게 나타나용접내력을 저지하기 위한 휘저항성능을 얻기 위해서 스티프너 보강이 반드시 필요함을 알 수 있고, 시험체의 최대 휘모멘트는 AL 시험체의 용접부위 항복 모멘트 $M_w = 71.89 \ t \cdot cm$, BL 시험체의 $M_w = 110.95 \ t \cdot cm$ 보다 2배 정도 크고 각 g 형강에 대해 최소 스티프너 보강된 g 형강 단면의 항복모멘트 $M_r = 87.48 \ t \cdot cm$, 115.30 $t \cdot cm$ 보다 상회하여 이로부터 g 형강 보강된 스티프너 단면은 충분한 휘저항성능을 발휘하는 것으로 나타났다. 그림 5.5에 휘모멘트를 비교하였다.

또 각 시험체별 항복모멘트 - 변형도 값을 비교하면 L-130×130×12의 형강을 사용한 AL 시험체는 스티프너 두께의 변화에 따라 변형도의 차이가 두려하게 나타나나, L-150×150×15의 형강을 사용한 BL 시험체는 파괴에 이를 때까지 스티프너 두께에 따른 영향의 차이를 보이지 않고 있다.

표 5.3 모멘트 비교

<table>
<thead>
<tr>
<th>시험체</th>
<th>M_n (t·cm)</th>
<th>M_w (t·cm)</th>
<th>M_r (t·cm)</th>
<th>M_y (t·cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>9.80</td>
<td>71.89</td>
<td>87.48</td>
<td>150.97</td>
</tr>
<tr>
<td>BL</td>
<td>15.30</td>
<td>110.95</td>
<td>115.30</td>
<td>244.09</td>
</tr>
</tbody>
</table>
(a) SG 1의 하중-변형도 곡선

(b) SG 2의 하중-변형도 곡선

(c) SG 3의 하중-변형도 곡선

그림 5.3 AL 시험체의 스타프너 하중-변형도 곡선
(a) SG 1의 하중-변형도 곡선

(b) SG 2의 하중-변형도 곡선

(c) SG 3의 하중-변형도 곡선

그림 5.4 BL 시험체의 스티프나 하중-변형도 곡선

- 47 -
(a) AL 시험체의 모멘트 비교

(b) BL 시험체의 모멘트 비교

그림 5.5 시험체별 모멘트 내력 비교
제 6 장 결론

이 연구는 철근 보의 응력 전달이 철근콘크리트 기둥에 원활히 이루어지면서 시공성을 향상시킬 수 있는 복합구조 접합부를 개발하기 위한 실험 연구로서, 그 형상의 크기, 힘 저항성능을 높이기 위한 보강 스티프너의 두께를 변수로 하여 실험을 수행한 결과 다음과 같은 결론을 얻었다.

1) 이 연구에서 고안한 복합구조 접합부는 T 형강, 스티프너 보강된 G 형강, 고강도 강봉, 전단접합판 등으로 구성되어 가공성과 원장시공성이 우수한 것으로 확인되었다.

2) 보의 합응력은 보 플렌지 - G 형강의 경로, 보의 전단응력은 보의 웨브 - 전단접합판의 경로를 통하여 기둥에 전달되도록 설계되었으며, 구조 실험을 통하여 이러한 경로를 통한 응력전달이 원활하게 이루어지는 것이 증명되었다.

3) 시험체의 설계모멘트는 혼의 전달 과정에 있는 보 플렌지와 G 형강 용접부, 스티프너 보강된 G 형강 중 가장 작은 용접부에 의한 것으로 나타났다.

4) 시험체는 AL 시험체의 항복모멘트 71.89 t·cm, BL 시험체의 용접 항복모멘트 110.95 t·cm 보다 2 배 정도 큰 모멘트에서 파괴되었으며, 이로부터 이 형식의 접합부는 충분한 힘저항성능을 가지고 있고 원활한 응력 흐름을 보이고 있다.
11. 若林寛, 南宏一, 西村泰志, “異種構成部材で構成される合成構造の設計法に関する研究(その1)”, 東京防災研究所年報, 第26号B-1, 1983. 4, p.p. 229 - 244
17. 森保広, 建築設計構造, 木村典, 東京, 1996.