인간복제가 기존 법률질서에 주는 충격과 대응
A shock and the correspondence that a human reproduction gives to the existing law order

김 수 동*

목 次

I. 서

II. 인간복제 기술의 발전 현황
 1. 인간 복제 기술의 개념
 2. 기술의 발전 현황

III. 기존 사회에 미치는 영향
 1. 종교・윤리적 문제
 2. 사회적 문제
 3. 기술적 부작용의 문제
 4. 법률적 문제

IV. 기존 법질서에 주는 충격
 1. 각 법인의 쟁점
 2. 기존 법질서 변형의 필요성
 3. 인간복제와 관련된 국내외의 입법례

V. 결어

* 인하대학교 법과대학 지적재산권학 전공 교수, 前 特許廳長
I. 서

현대사회에서 가장 활발하게 논의되고 있으며 21세기 양대 세계적 기간산업으로 성장하고 있는 것에는 ‘생명공학분야’와 ‘정보화분야’가 있다. 이 두 산업분야는 고부가가치 산업으로서 모든 국가의 전략적 핵심기술로 고려되고 있으며 이에 따라 국경 없는 경제전쟁 시대를 이끌어가고 있는 분야라고도 할 수 있다. 특히, 생명공학의 분야는 많은 연구가 진행되어야 하며, 연구 성공 시에는 전 세계 시장을 석권할 수 있다. 그러하여 앞 다루어 모든 나라들이 생명공학분야에 막대한 연구비 등을 투자하고 있으며, 그런 결과로 인해 생명공학의 분야는 인간 질병의 치료, 농작물의 향기적인 수확 등 각종의 결과를 낳게 되었으며, 공상과과학영화에서나 볼 수 있었던 인간복제와 같은 일이 현실로 다가오고 있다.

그런데 과학기술의 발전은 언제나 법적 논의에 앞서 이루어졌고, 법적 논의는 언제나 과학기술의 발전을 뒤따라 간 수밖에 없는 것이다. 생명공학의 산업적인 측면에서의 눈부신 발전에 반하여 이를 보호, 육성 혹은 규제하는 수단으로서의 법률은 법제계의 미비, 해석상의 상이함 등으로 인하여 실제 적용에 있어서 많은 어려움이 존재하고 있다. 국내에서도 1983년 제정된 생명공학육성법이 몇 차례의 개정을 거친 바 있으나, 이 법의 목적인 생명공학연구의 기반을 육성하여 생명공학을 보다 효율적으로 육성·발전시키는데 있고 생명공학으로 인한 피해를 규제하기 위한 것은 아니었다. 이러한 문제들이 존재하는 가운데 1997년 초 영국 로서린 연구소의 윌머트 박사 팀이 창조해낸 복제 양 ‘돌리’1)의 출현은 전 세계에 걸쳐서 윤리적·과학적·법률적으로 엄청난 논란거리가 제공하였을 뿐만 아니라 누군가에 의하여 성공하였을 지도 모르는 인간복제에 대해서 미국을 비롯한 세계 각국 정부로 하여금 법률적·정책적으로 규제·경고하게 하는 직접적인 계기를 창출하였다.

그러나 인간복제와 같은 획기적인 기술이 발전 일로에 있지만, 그를 통제할 수 있는 범은 미비하기 때문에 여러 가지 법적 문제가 발생하고 있다. 따라서 이러
한 인간복제가 현실로 다가온 지금에 발생될 수 있는 문제의 해결책을 모색해야 하는 것은 당연한 과제라고 할 수 있다. 이러한 문제들을 살펴보기 위해 이 글에서 는 인간복제의 현 상황을 살펴보고, 인간 복제가 기존 사회에 미치는 영향을 살펴볼 것이다. 특히, 기존 사회에 미치는 영향 중 기존 법질서에 주는 충격을 각 범
마다의 관계에서 살펴보고 기존 법질서의 변형 필요성을 살펴보기로 하겠다.

II. 인간 복제 기술의 발전 현황

1. 인간 복제 기술의 개념

 인간 복제라는 말은 체세포 핵이식 기술을 이용한 생명 복제기술을 인간에게 시행하는 것을 말한다. 본제에 있어서 여러 가지 방법이 있지만 일반적으로 사
람들이 거론하는 인간복제는 다음에 서술될 ‘인간개체복제’ 또는 ‘체세포복제’
를 의미한다.

 인간복제는 여성에게 미성숙란의 성숙을 촉진하는 호르몬의 투여 후에 여성
의 난소로부터 난자를 제외로 거내는 것으로 시작된다. 이 난자로부터 23개의
염색체를 제거하여 무핵란 혹은 탈핵란을 만든다. 이 무핵란에 복제된 인간의
체세포로부터 얻어진 46개의 염색체를 세포융합 등의 방법으로 도입한다. 하지
만 이 46개의 염색체는 생식세포 간의 합합으로 만들어진 것이 아니고 복제할
인간의 체세포로부터 직접 획득한 것으로 체세포를 공급한 인간과 동일한 유전
정보를 갖게 된다. 이 난자를 전기나 화학물질 등으로 자극하여 태아로의 분화
가 가능하도록 활성화시키고 실험관에서 배양한 후에 여성의 자궁에 인공적으
로 착상시켜 야기로 출산시킨다."

2) 김병일·이동문, “인간줄기세포(Embryonic Stem Cell)의 특허보호 문제에 관한 연구”, 한국발명진흥회의
식재산권연구센터 연구보고서, 2002, 8면.

인간복제는 방법에 따라서 인간개체 복제, 인간배아 복제, 장기 복제로 구분될 수 있다. 이하에서는 각각의 방법을 자세히 살펴보기로 하겠다.

(1) 인간개체복제(human individual cloning)

 인간개체복제는 한 인간과 유전적으로 동일한 다른 인간을 만드는 방법이다. 여기에는 크게 수정란분할과 채세포핵이식의 두 가지 기술이 있다. 수정란 분할법은 수정란이 4-8개의 세포로 분열한 상태에서 각각의 핵구(세포)들을 여러 물리, 화학, 생물학적인 수단을 사용하여 분리해 내는 기술이다. 이렇게 갈라진 세포들은 다시 완전한 개체로 분화할 수 있는 능력이 있으므로 각각을 자궁에 착상시킨다면 인공적인 일란성 다테아(생동이)들이 나오게 되는 것이다. 채세포 핵이식법은 복제양 돌리를 만드는 데 사용된 것과 마찬가지로 성체의 채세포를 이용하는 방법이다. 즉 성체의 채세포 핵을 분리해 내어 여러 가지 처리를 거쳐 재 프로그래밍 시킨 후 수핵 세포질(사람, 혹은 다른 동물의 난자)과 수정시켜 새로 분화하게 만드는 방법이다. 이 수정란을 자궁에 착상시킨다면 핵을 떼어낸 성체와 유전적으로 동일한 새로운 아기가 탄생하게 된다. 4)

 인간개체 복제술의 이점은 무엇보다도 불임부부에게 새로운 희망을 줄 수 있다는 것이다. 즉 성세포(정자)에 문제가 있어서 정상적인 방법으로는 수정이 불가능한 부부를 위해 여러 가지 방법들이 강구되어 왔지만 채세포 핵이식술을 이용하면 정자가 없어도 수정이 가능하므로 이 문제를 완전히 다른 차원에서 해결할 수 있는 길이 열린다. 수핵 세포질로 어머니의 난자를 이용하고 채세포핵으로 어머니, 혹은 아버지의 채세포를 이용한다면 어머니와 꽤 닮은 민, 혹은 아버지와 꽤 닮은 아들을 낳을 수도 있는 것이다. 또 수정란의 배분리 기술을 이용하면 자궁에 이식하기 전에 수정란을 검사하여 결합이 있는 것을 걸러 내거나 혹은 그 유전자만을 교정하여 원하는 건강한 아기를 얻을 수 있다. 이는 현재의 산전 진단기술이 착상 전까지 확장되는 것을 의미한다. 5)

4) 유네스코 한국위원회, 「생명복제기술 합의회의 2차 시민패널 예비토임 자료집」. (http://www.unesco.or.kr/cc/archive.html 참조 (2004. 6. 29))
(2) 인간배아복제(human embryonic cloning)

인간배아복제는 인간개체복제와 기술적으로는 동일하나 그 목적이 개체를 얻으려는 것이 아니라 완전히 분화되기 전의 배아줄기세포(embryonic stem cell)를 얻거나 그에 이르기까지의 과정을 연구하려는 것이다. 일반적인 발생학의 관점에 의하면 인간의 수정란은 수정 후 대략 14일에 원시선(primitive streak)이 나타나면서 배아단체로 들어간다. 이때부터 8주까지는 각종 기관이 형성되는 데 이 시기를 배아기(embryonic period)라고 부르며 이후로는 이미 형성된 기관과 신체부위가 자라는 태아기(fetal period)로 넘어간다. 이 배아의 형성과정은 임상의학과 기초 생물학의 발전에 매우 커다란 의미가 있기 때문에 많은 학자들이 이에에 관심을 보이고 있으며 배아기간세포는 알츠하이머, 당뇨병 등 여러 질환을 치료하는 데 사용될 수 있다.

현재 백혈병, 파킨슨병, 당뇨병 등에 걸린 환자에게 장애가 생긴 세포를 대신하는 정상 세포를 외부에서 배양, 주입하여 치료하려는 시도가 행해지고 있다. 그러나 면역학적 거부반응의 문제 때문에 주입하는 정상 세포는 배아줄기세포(embryonic stem cell)로부터 얻은 것을 사용한다. 이 단계의 세포는 아직 면역반응을 일으킬 만큼 성숙하지 않았기 때문이다. 그러나 인간배아복제 연구를 통해 인간 세포가 난자 없이도 재 프로그래밍 되는 과정을 이해하게 되면 환자 자신의 세포를 역분화시켜 사용할 수 있으므로 면역학적 거부반응의 문제나 배아 세포를 사용하는데 대한 윤리적인 문제를 줄일 수 있다. 아울러 이 과정을 더욱 완벽하게 이해한다면 심지어는 손상된 장기나 신체 부분을 세포 하나로부터

6) 정자의 난자가 만난 수정란이 세포 분열을 거듭하면서 점점 빠르게 성장하면서 인체 각 부분의 장기로 분화되는데, 줄기세포(stem cell)는 수정란에서 모든 장기의 돌연변이가 만들어지는 곳이 되는 세포로서, 몸을 구성하는 210종류의 세포로 자랄 수 있어 생명의 근간이란 의미에서 불어진 이름이다. (http://news.encrypted.com/show.jsp?is=20040321n01015 참조 (2004, 5, 30))

7) 유네스코 한국위원회, 앞의 자료집.

재생시킬 수 있다는 기대도 할 수 있다.

(3) 장기복제(organ cloning)

한 개의 세포를 이용하여 그 세포가 원래 속해있던 전체 장기를 복제하려는 것은 아직은 꿈에 불과하지만 세포의 역분화 과정이 완전히 이해되었다면 불가능한 일이 아닐 수도 있다. 그러나 근육이나 연골, 피부와 같은 조직은 체외에서 배양하여 이를 필요로 하는 환자에게 이식하려는 연구는 현재 진행 중이다. 최근에 성공한 사람 귀 모양의 연골 세포를 쥐에게서 배양한 실험 등이 이에 속한다고 볼 수 있는데 이런 연구에서는 수정란을 사용하지 않으므로 심각한 윤리적인 문제는 제기되지 않고 있다.\(^9\)

아직은 SF적인 상상에 불과하지만 복제인간이 가능하게 된다면 신체가 손상을 입거나 병이 들었을 때 스스로의 신체를 복제하여 이식함으로써 다시 완전한 육신을 갖추게 될 수도 있을 것이다. 이는 어떤 면에서는 인간이 영생할 수 있다는 의미이며 때문에 특정 종교집단에서는 복제기술의 개발을 응호하기도 한다. 또 부모가 없고 따라서 사회적으로 열외된 복제인간들은 대량 생산하여 노동자나 군인으로 사용한다는 아이디어도 있지만 현 인류 사회에서 쉽게 가능할 걱정되는 것이다.

2. 기술의 발전 현황

(1) 국내에서의 복제연구 현황

국내 복제기술은 선진국과 대등한 수준, 아니 어쩌면 더 높은 수준에 있다고 할 수 있을 것이다. 근래에 우리나라는 복제연구 분야의 전문가들의 연구는 세계를 놀라게 하고 있으며 우리나라의 전문가들을 염청난 역수로 스카우트 하려는 것

9) 유네스코 한국위원회, 앞의 자료집.
어서도 볼 수 있다고 할 것이다. 이에 국내의 연구 경과를 살펴보면 다음과 같다.

지난 98년에 경희대 불임클리닉 김승보 교수는 시험관 아기시술 때 수정하지 못하고 버리는 난자세포의 핵과 몽을 구성하는 세포의 핵을 바꾼 뒤 자궁내 이식 전 단계인 4세포기 베아단계까지 세포분열을 유도하는 데 성공했다고 밝혔다. 이는 복제인간을 만들 수 있는 바로 전 단계로, 4세포기 베아단계에서 자궁에 이식하면 복제된 태아가 태어나는 것이다. 99년 2월에 서울대 황우석 교수는 체세포 복제방법으로 첫소 ‘영통이’를 복제하는 데 성공했다. 수컷 동물 복제는 알컷의 동물복제보다 어려운 것으로 평가되었던 분야로 국내 유전 공학 수준이 세계적 수준에 있음을 증명했다. 4월에는 첫소와 한우의 귀에서 각각 떼어낸 체세포를 복제한 한우 ‘전아’를 복제하는 데 성공하였다. 5월에는 KAIST의 과학센터팀이 인간의 ‘백혈구 증식인자(G-CSF)’를 첫서 분비하는 형질전환 흐름소인 ‘베디’를 복제하였다. 베디가 갖을 통해 만들어낸 G-CSF는 인체 내에서 근육 미량만이 생산되는 생리활성물질이다. 이 물질은 조혈세포로부터 백혈구의 성장 및 분화를 촉진시켜주는 단백질로 항암제 투여 후에 흔히 오한, 에이즈 치료 때 발생하는 백혈구 감소현상을 막아준다. 베디를 이용해 G-CSF를 생산할 경우 현재 생산단가의 약 1% 정도로 추출해 낼 수 있어 상품화에 성공할 경우 엄청난 경제적 이익을 거둘 것으로 기대하고 있다. 또한 지금의 인간에게 이식 가능한 장기를 가진 대지를 생산하는 연구가 진행 중인 것으로 알려졌다. 10)

미국 시애틀에서 발표된 ‘여성의 난자에 성인의 체세포 핵을 이식하는 방법으로 베아를 복제했으며, 이 베아에서 줄기세포를 얻는데 세계 최초로 성공했다’는 요지의 서울대 황우석 교수팀의 특별기자회견은 전 세계를 충격에 빠뜨리기도 했다. 황우석 박사가 추진하고 있는 연구는 베아복제연구, 인공장기 이식기술 개발 등이며, 이를 통하여 당뇨병, 뇌졸중, 알츠하이머성 치매, 파킨슨병 등의 질병의 치료에도 획기적인 결과를 낼 것으로 보인다. 11) 또한, 서정원 박사

의 ‘애비없는 생쥐’가 탄생함으로 인해서 인간복제 기술의 발전은 실로 전세계 최고의 수준이 아니라 할 수 없다.

미리아병원 생명공학연구소의 박세필 박사는 지금의 윤리적 논쟁이 과학자들의 발목을 잡아서는 안된다고 말한다. 21세기는 생명과학의 시대이고 전세계 국가들이 생명과학 기술의 선점을 위해 뛰고 있는 상황에서 이러한 논쟁으로 시간을 소모하고 있다면 우리의 기술이 뒤떨어질 수밖에 없다’고 말하고 있다.

(2) 국외에서의 복제연구 현황

최초의 핵 이식 실험은 개구리의 핵을 난자에 이식시키려는 것이었다. 이 실험은 1952년 로버트 브릭스(Robert Briggs)와 토마스 킹(Thomas J. King)에 의하여 시도되었으나 수정이란이 살아오지 못한지 못했다. 1970년대에 이르러 존 가든(John Gurden)에 의해 수정이란이 살아단계까지 진척되었으나 씨앗이 단계까지 발생하는 데 그치고 말았다. 1984년 스티안 윌러드슨(Steene Willadsen)은 44배의 128할구를 이용하여 소와 원숭이를 복제하는 데 성공하였다. 1997년 영국 로스린 연구소의 아이언 워마트(Ian Wilmut)와 그의 연구팀은 복제양 ‘돌리’를 탄생시켰다. 최초로 체세포 핵을 재거한 난자에 접합시켜 발생시킨 복제양 ‘돌리’의 염증은 여태까지 포유동물의 체세포를 이용한 복제는 불가능하다고 여겼던 것을 가능케 한 것이고 다 자란 체세포의 핵을 이용하여 생식적 수정 없이 포유류 동물의 생명을 발생시켰다는 점이다. 즉, 과거의 복제는 배아의 세포주로부터 이루어진 복제였으나, 돌리를 복제한 기술은 성체세포에서 복제한 최초의 복제양이라는 점에서 다르다. 또한 로스린 연구소의 복제양 돌리에 이어 복제양 폴리를 탄생시켰다. 폴리는 인간 유전자를 가지고 있어 인체에서만 만들어지는 단백질을 합성할 수 있다는 점에서 주목을 받고 있다고 한다. 인간 유전자와 같은 인간은 아니지만 새로운 복제 양 폴리는 인간 유전자와 전 인간이

12) 박세필, 「인간복제 어떻게 되어야가 있다」, 과학과 기술, 2000,11., 57-61쪽.
13) 박충구, 「생명복제 생명윤리」, 75쪽.
아니라는 같은 논리로 인간 유전자를 가지고 또 다른 어떤 실험을 할지 모른다. 그밖에도 미국의 ACT사는 인간의 세포핵을 채취하여 첫소의 난자를 착상시키는 연구를 진행중이고, 호주에서는 130여년 전에 멸종된 태즈마니아 호랑이의 DNA를 추출하여 복제하려는 계획을 추진중이며, 일본에서는 우유에서 채취한 세포를 이용하여 소를 복제하였고, 하와이 대학 연구팀은 수컷 생쥐의 체세포 복제에 성공을 하였고, 이탈리아에서는 취고환에서 추출한 정소에 무정자 납성의 정자를 배양하여 인공수정을 하였다. 15

Ⅲ. 기존 사회에 미치는 영향

1. 종교·윤리적 문제

유인신이 인간을 창조하였으며 인간의 생명을 관장하고 있다고 믿는 기독교(개신교, 천주교)계에서는 생명은 창조주의 고유 영역이라는 교리에 의거하여 인간 생명을 인위적으로 조작하는 행위를 신에 대한 모욕이자 도전이라고 보고 있다. 불교의 입장에서는 생명부재가 우주의 섭리인 다르마(Dharma)를 파괴하는 행위로 생태계 파괴를 비롯한 업종단 후유증을 낳을 것이라고 생각한다. 특히, 보온의 정의 감소, 인간성의 상실, 생명을 위해 타인의 생명을 이용하는 육망의 결과에 대해서는 회의적이다. 또한, 유교의 입장에서는 무성생식과 같은 인간복제가 이루어지면 생물 및 인간돌생에 대한 기존의 관념에 큰 혼란이 일어날 뿐만 아니라 그로 인한 인간관, 자연관, 도덕관 자체가 크게 변할 것이며 인간성이 다수 출현하여 횡일적 이념과 사고의 조작도 가능하므로 인간의 존엄성을 해칠 것이다. 그러므로 인간복제는 앞으로 인류문명사에서 인류생존과 사회

적 절제유지에 인간의 책임을 안겨 줄 것으로 본다."

유리적으로는 인간복제가 인간의 존엄성을 대단히 훼손할 것이라는 우려가 있다. 인간의 존엄성이 그 생명과 인격은 절대적으로 고유하며 전 우주에서 유일한 것이라는 사실에 기반을 둔다고 한다면 인간복제의 가능성은 이를 근본에서부터 뒤바밌는 것이다. 물론 복제 인간이 원래의 개인과 독감지 않다는 반론도 가능하지만 지금까지 신성한 것으로 여겨왔던 인간의 생명을 인간이 조작한다는 사실 자체가 인간의 존엄성을 훼손한다는 주장도 반반치 않다. 아울러 인간 복제 연구 및 시술 과정에서 수많은 수정란이나 배아가 회생될 것이 분명하기 때문에 이것 또한 인간 생명의 존엄성이 반한다는 주장도 있다.

지난 8월 22일에 교황 요한 바오로 2세는 메시지를 통해 모든 기계적 전보다 인류를 격려한다는 점에 대한 생각은 잘 알려져 있지만, 인간복제는 신의 창조 영역을 능가하려는 거만한 시도라고 비난하기도 했다. 이같은 교황의 언급은 영국의 과학자들에게 의료연구 차원에서 태어복제가 허용되지 2주도 채 지나지 않아 나온 것이었다.

2. 사회적 문제

 인간복제가 가능해 진다면 현재 인류 사회의 근간을 이루는 결혼과 가족 제도가 심각한 위기를 맞을 것이다. 친족관계가 혼란에 빠질 것은 물론이고 반드시 결혼을 하거나 남녀가 결합하지 않아도 아기를 가질 수 있기 때문에 다양한 형태의 가족이 등장하게 될 것이며 독신자나 동성애자 커플들도 부모가 될 수 있을 것이다. 또 복제기술을 통해 부모가 되려는 이들은 가급적 우수한 유전자형질을 가진 아기를 낳으려 할 것이기 때문에 새로운 우생학적 차별과 그에 따른 사회 계급이 생겨날 지도 모른다. 이런 상황은 심각한 사회불안의 요소가 될 것이다. 나아가 인류 사회가 보통 인간과 복제인간의 두 부류로 분열될 가능성도 존재한다. 또 전통적인 성역할과 남녀 개념 역시 커다란 전환을 겪게 될 것이다.

3. 기술적 부작용의 문제

국내외에서 동물복제의 대가로 알려진 서울대 황우석 교수의 연구발표에 따르면, 대리모 자궁에 정상적으로 착상된 복제 베아들이 가운데 출산 뒤까지 자란 동물은 전체의 25%밖에 되지 않는다고 한다.

그 나머지는 유산, 기형제, 급사증후군, 거대체증증후군으로 얼마 살지 못하고 죽었다고 한다. 이 기술이 그대로 인간복제에 쓰이다면 사회적으로 매우 큰 파장이 올 것이라고 주장했다. 실제적으로 복제탄생 제1호인 ‘돌리’의 경우, 노화현상이 같은 출생 나이의 양보다 급속히 진행되는 것으로 조사되고 있다. ‘돌리’의 유전자를 분석한 결과, 세포 노화의 지표로 알려진 ‘텔로미어(Telomere)’ 유전자가 정상 양보다 짧은 것으로 나타났다. 그만큼 노화가 일찍 온 것이다. 이 때문에 돌리는 퇴행성 환절염을 앓았고, 겉든결이가 비정상적인 형태를 보인다. 돌리, 진행성 폐질환을 앓고 있는 것으로 드러나 도출했다고 돌리를 복제한 스코틀랜드 에딘버러의 로슬린 연구소는 2003년 2월 14일(현지시간) 밝혔다. 만약 예를 들어 사고로 죽은 아이를 대신해서 복제인간 아이를 기우는 부모가 있다고 했을 때, 아이에게 노화가 생겨 부모보다 빨른 속도로 늙게 된다면, 그것을 알게 된 부모에게 또 하나의 슬픔이 될 것이고, 이것은 사회문제로까지 전이될 염려가 있다.

인간 베아줄기세포의 배양도 장기에 생긴 질환에 당장 응용이 어렵다. 세포를 장기 형태로 만드는 기술은 아직 개발되지 않았기 때문이다. 따라서 간이나 콩팥 등 이식용 장기를 생산할 수 있게 된 것은 아니다. 베아 대신다 자란 성인의 공주에서도 치료용 줄기세포를 얻는 것이 가능하고, 이 것이 난자 등을 이용하지 않고도 윤리적이긴 하지만, 성체 줄기세포는 이번에 개발된 베아 줄기세포와 달리 대량 배양이 어렵고 원하는 종류의 세포를 선택적으로 분화시키는 기술이 까다로워 실용화까지 앞으로도 많은 시간이 소용될 전망이다.
4. 법률적 문제

현행 법률상의 가장 큰 문제는 혼인과 가족 공동체에 기반을 둔 범리가 모두 혼란에 빠진다는 것이다. 우선 복제된 인간의 법률적 지위를 어떻게 붙 것인가의 문제가 있다. 아무리의 복제 인간은 내게 형제인가, 아니 아버지인가? 이는 혼인과 가족제도에 기반을 둔 현행 법률로는 해결될 수 없는 문제로 여기서 그치지 않고 유산 상속과 보험 등 친족제도와 관련된 모든 법률에까지 미친다. 또 현행법에 보장된 인간의 자유와 평등권은 인간 존의 단일성과 균질성을 전제로 한 것으로 복제된 인간이 등장한다면 이 또한 큰 혼란에 빠질 것이다. 아울러 모자보건법과 형법상의 낙태죄 등 입신 및 출산과 관련된 범규들로도 적용이 어려워질 것이다.

위에 언급한 문제들 외에도 현행법상, 민법상, 형법상, 특허법상 등 산재해 있는 법적 문제가 많이 존재한다. 따라서 인간복제가 각 법에서 불리울 수 있는 구체적인 문제들을 후에 점을 바꾸어 다시 살펴보도록 하겠다.

IV. 기존 법질서에 주는 충격

1. 각 법에서의 쟁점

(1) 현행법에서의 문제

현행법상 발생 될 수 있는 문제로는 신체의 자유와 평등사상 등의 기본권적인 문제, 국가의 존중을 전제로 한 정부의 권리구조의 문제, 양심의 자유문제, 종교의 자유에 대한 문제들이 있을 수 있다.

우리 헌법 제10조는 “모든 국민은 인간으로서의 존엄과 가치를 가지며, 행복을 추구할 권리를 가진다. 국가는 개인이 가지는 불가침의 기본적 인권을 확인하고, 이를 보장할 의무를 진다”고 규정함으로써 인간의 존엄성에 대해서는 전
국가적인 자연권이라 인정하고 있다. 또한, 헌법상 인간이란 나이, 성별, 사회적 지위, 재산, 종교, 인종, 국적, 장해유무 등에 따라 차별받지 않는 존재 그 자체로서 의미를 지닌 인간을 일컫는다. 이렇듯 인간은 최고법인 헌법에서 존중되고 보호되어야 하는 존재인데 인간복지가 이루어진다면 인간 신체의 자유와 평등상상 등 인간의 전면적인 기본권에 있어 기존의 방식과는 헌저히 다른 차원으로 가게 될 것이다.

그리고 인간의 기본권을 보장하는 것이 국가의 기본무라고 선언하고 있는 데, 만일 인간복지가 이루어진다면 다양한 인간 공동체는 부정하게 되어질 것이 다. 왜냐하면 모두 똑같은 이념과 사상을 가진 복제인간으로 말미암아 국가사회가 획일화된 체제가 된다. 다양한 의견의 제시가 원초적으로 불가능해지고, 국가가 보호해야할 유일존재로서의 인간이 사라지게 되어 존립목적을 잃게 된다. 만약 그와 같이 된다면 공동체의 가치상실로 사회적인 정체를 가져와 그 체제는 필연적으로 무너지게 될 것이다. 또한, 개량된 인간에 의한 재래인간의 멸종이 일어날 수 있을 것이다. 복제인간은 우생학적으로 인간개량을 지향할 수밖에 없다. 유전자조작에 의하여 보다 머리가 우수하고, 건강한 신체를 비롯하여 다양한 재능을 가진 인간이 생산될 것이다. 그 과정에서 현재의 인종은 멸종을 하게 되고, 현재의 인종과는 여러 면에서 전혀 다른 새로운 종의 인간이 등장하게 될 것이다. 지금 개량되어 사육되고 있는 것조나 터지를 보면 쉽게 그 위험성을 예견할 수 있다.

그리고 헌법 제10조에 못지않게 발생될 수 있는 문제는 헌법 제22조 과학기술연구의 자유와 그 한계에 관한 것이라고 할 수 있다. 헌법 제22조에서 학문의 자유를 인정하고 있으므로 과학자는 얼마든지 자신의 분야를 연구할 자유가 있다. 그러므로 과학자나 의사학자의 학문연구는 인간정신의 자유로운 추구, 의학적 정체적 이익, 그리고 인류복지를 가져다주는 활력의 한 원천으로서 마땅히 보호하

17) 김철수, 『헌법학개론(제11장정신권)』, 박영사, 1999, 245쪽.
18) 황무일, 「인간배아 복제에 관한 헌법적 고찰」, 『복지행정연구 제17집』, 인양대학교 복지행정연구소, 2002, 8쪽.
19) 황무일, 「의의 논문」, 15쪽.
고 육성해야 한다. 그러나 다른 한편으로 과학기술의 활용에서 오는 위험이나 오용가능성은 개인과 사회에 부담을 주는 것으로서 규제되어야 함은 말할 필요도 없다. 학문 연구 성과의 적응으로서의 첨단유전공학기술, 의학기술은 오늘날 연구자 자신들도 예측하지 못할 정도로 엄청나게 빠른 속도로 변해가고 있으며, 그 기술이 인간의 생명, 건강, 환경에 미치는 영향이 확실히 예측되지 않는 가운데 꼬박바로 광범위한 적응을 불가피하게 만드는 측면 때문에, 통상의 연구의 자유에 대한 규제보다 더 강한 규제를 받는다고 볼 수밖에 없다. 20

(2) 민법에서의 문제

민법상 문제가 되는 것으로는 태아의 범칙 지위의 문제, 권리능력과 행위능력의 문제, 불법행위시 손해배상의 문제 그리고 친족·상속의 문제 등이 발생할 수 있다.

첫째, 민법상 태아는 범칙적으로 어떠한 지위를 갖느냐가 문제되는데, 우선 우리의 규정을 보면 특별히 범에서 정한 경우에만 생존할 것으로 보는 개별주의의 원칙으로 따르다. 그런데 특별히 범에서 정한 규정을 만족하기 위해 태아의 복제가 성행될 수 있다. 나쁜 짓으로 태어를 복제하고 이를 상속이나 인지 청구권 등에서 이용한다면 불법적인 일들이 민법에 발생하게 된다. 또한, 우선한 인간을 자식으로 만들기 위해 수술한 인력의 체세포 등을 복제하여 자식을 얻게 되면 인간의 개성과 자유를 유린당하는 것이 될 것이다. 그리고 더 나아가 인간을 복제한다면 언제 권리능력을 취득하는지가 문제가 될 수 있다. 우리 민법의 규정은 사람은 생존하는 동안 권리와 의무의 주체가 된다고 한다. 따라서 태어날 때 권리능력을 취득하고 사망으로 권리능력을 상실하게 된다. 그런데 문

21) 태아를 보호하는 입법에는 개별주의적법과 일반적이므로 나온다. 우리 법은 특별한 경우 즉, 손해배상의 청구, 상속, 유증, 인지청구, 사인증여의 경우에 한하여 이미 태어난 것으로 본다.

22) 민법 제3조.
제는 언제를 태어날 때로 보는지 언제를 사망한 것으로 볼지가 문제가 된다. 사법적으로는 인간의 탄생 혹은 전부노출설이 동설이며, 사망은 호흡정지설과 근자에 받아들여지고 있는 뇌사설이 있다. 따라서 인간의 복제가 있는 경우에는 특허시험관에서 인간이 탄생하는 경우와 같은 때에는 언제 권리능력을 인정해야 하는지가 문제될 수 있다. 마지막으로 행위능력의 문제인데 복제된 인간을 완전한 인격체를 가지고 충분히 법적 행위를 할 수 있는 행위능력자로 볼 것인지 아니면 불완전한 인간으로서 법적인 행위를 할 수 없는 행위능력자로 볼 것인지가 문제될 수 있다. 또한, 행위능력자로 본다면 한정치산자, 미성년자, 급치산자 어디에 해당할지도 결정해야 할 것이다.

둘째, 복제인간이 불법행위를 한 경우이다. 이러한 경우에 과연 한 인간으로서 불법행위 주체가 되어 손해배상을 복제인간 자체에게 인정해야 할지, 만일 부모이어도복제인간이 자식이 된다면 부모 등의 감독자 책임의 문제가 발생할 수 있을 것이다. 또한 반대로 복제인간이 인간으로 인정받지 못한다면 복제인간이 저지른 일을 그 주인이 책임져야 하는 공직자 책임이나 동물 점유자 책임을 져야 하는자가 문제될 수 있을 것이다.

셋째, 친족관계에 있어서 복제인간이 기존의 가족사회에 등장하게 될 경우 부부공동체의 해체현상은 물론이고, 가사 전통적인 혼인관계가 지속한다고 하더라도 친족관계에 일대 혼란을 가져오게 된다. 이 때 기존의 가족관계는 무너지게 된다. 우리의 가족법은 혈연의 연락이 서로 있는 자를 혈족이라고 한다. 부모 형제가 전형적인 혈족이다. 삼촌이나 고모는 부계혈족이고, 외삼촌이나 이모는 모계혈족이 된다. 자연혈족은 원칙적으로 출생에 의하여 발생하게 된다. 아버지의 복제인간은 혈연의 연락이 있다. 그렇다면 아버지의 복제인간이 혈족으로 보아야 하는가의 문제가 발생한다.

23) 인간의 탄생에 대한 학설로는 전통설, 일부노출설, 전부노출설, 독립호흡설이 있다.
24) 민법 제755조.
25) 민법 제758조.
26) 민법 제759조.
넷째, 복제인간에 대한 상속문제이다. 상속제도는 시대와 체제에 따라서 변혀졌지만 동서고금을 막론하고 존재하고 있다. 러시아에서도 불세비히행명 직후인 1918년 상속 제도를 폐지하였다가 1922년 이후에는 다시 부활시켰고27), 북한도 민법 제63조 및 가족법 제46조 내지 제53조를 두어 이를 정식으로 인정하고 있는 것처럼 자본주의사회는 물론 사회주의체제에서도 상속제도는 가계를 영속시키고자 하는 인간의 본능에 기초한 제도로서 앞으로도 지속될 것이다. 만약 복제인간이 생산된 경우 그에게도 가족의 일원으로서의 상속권을 인정할 것인가? 인정한다면 그 상속순위나 상속지분은 어떻게 되는가? 상속순위나 상속지분을 바꾸기 위하여 복제인간을 만드는 동 상속권의 침탈행위를 한 경우 어떻게 처리하여야 하는가? 등등 여러 문제가 아기될 것이 분명하다. 상속상의 문제는 위의 가족관계의 설정과 불가분의 관계를 이루는 바, 우리 인간이 지금까지 전혀 예상하지 못하던 새로운 환경의 조성, 그것도 과학적적이다 못한 방향에서 전개되는 문제점으로 인하여 인간의 복제는 중대의 기존질서를 파괴함으로써 인류를 망할 수 없는 흔한으로 빼들리게 할 우려가 있다.

(3) 형법에서의 문제

형법에서 발생할 수 있는 문제로는 복제인간이 범죄의 주체가 되는 경우와 범죄의 객제가 되는 경우로 나누어 볼 수 있다.

우선 복제인간이 범죄의 주체가 되는 경우가 문제될 수 있는데, 복제인간이 타인의 재물이나 신체에 손상을 가한 경우에 인간으로 인정될 수 있다면 그것은 범죄행위에 해당하고 범죄자가 될 수 있다. 따라서 인간과 마찬가지로 구금이나 벌금 등의 처벌을 받게 될 수 있다. 하지만 인간으로서의 지위를 인정받지 못한다면 복제인간은 한낱 사물이나 동물 정도에 해당되어 그 복제인간의 주인이라고 할 수 있는 사람이 그 책임을 질 수 할 것이다. 그러나 문제는 형법의 최종적 적용의 성질을 볼 때 그런 경우에는 민법상 책임으로 한정될 것이라고 보아진다.

27) 김주수. '전통·상속법', 법문사, 1991. 463쪽.
또한, 복제인간이 범죄의 객제가 될 때 문제될 수 있는데, 과연 복제인간에게 성립한 문제를 입힌 것이라면 단순히 타인의 사물에 해를 입힌 것에서 손괴죄를 적용할 수 있을지 아니면 독립적 인간으로 보아 상해죄와 살인죄를 적용하여 처벌할 수 있을지가 문제될 수 있다. 이러한 문제는 특히 타인을 교사하여 살인을 하거나 해를 입힌 경우에 문제가 될 수 있다. 교사를 한 경우에 과연 교사법으로 처벌할 수 있을지 아니면 민법상 손해배상의 문제로 처리될 수 있을지가 문제될 수 있다. 그러나 더 나아가 복제인간과 인간이 협력하여 죄를 범한 경우에는 공범죄로 처리하여 처벌을 줄 것인지 아니면 인간의 단독범으로 할 것인지도 큰 문제로 부각될 수 있을 것이다.

(4) 특허법에서의 문제

특허법상 문제가 될 수 있는 것으로는 과연 복제인간을 특허의 대상으로 할 수 있을 것인가이다. 우리나라의 특허법에 의해 보호대상이 되는 발명은 "자연법칙을 이용한 기술적 사상의 창작으로서 고도한 것"이라 정의된다. 즉 자연법칙을 이용하지 않은 수학공식이나, 암기방법 등은 발명이라 할 수 없지만 대부분의 자연과학과 기술개발 연구결과들을 보호의 대상으로 하고 있다. 그리고 특허를 받을 수 없는 발명으로는 "공공의 질서 또는 선량한 품속을 문란하게 하거나 공중의 위생을 해할 염려가 있는 발명"이 있다고 할 수 있다. 이와 같은 보

28) 형법 제366조 내지 제370조.
29) 형법 제257조 내지 제261조.
30) 형법 제250조.
31) 형법 제31조.
32) 형법 제30조.
33) 특허법 제2조 제1호.
34) 특허법 제32조.
호 대상으로서의 산업상 이용가능한 발명의 정의와 불특히 대상의 규정은 발명자가 특허를 받느냐 못받느냐를 결정하는 중요한 문제로 직결받은 절차와 증거자료에 따라 엄격히 심사를 거쳐야 하기 때문에 우리나라 뿐만 아니라 거의 모든 나라에서 이를 특허법에서 정하고 있다. 인간복제가 자연법칙을 이용한 것으로 생각할 수 있지만, 그것은 산업상 이용가능성이 없고, 공시양속을 해한다는 이유로 특허를 허용할 수 없다는 것이 일반적이다. 하지만 특허보호의 여부에 대해서 각국은 법률적인 원리에 의하기보다는 오히려 지극히 정책적인 측면에서 접근하고 있는 실정이다. 따라서 인간복제의 특허 부여 여부는 시대가 호름에 따라 변할 수 있을 것이라고 본다. 그러므로 이러한 인간복제의 특허성을 인정여부는 특허법이나 심사기준으로 판단하는 것이 옳다고 본다.

우리나라의 심사 실무는 인간 배아 복제에 관한 특허출원은 현행 특허법, 생명공학분야 심사기준 및 의약분야 심사기준에 따르면 복제 인간을 만드는 등의 인간 존엄성을 손상시키거나 공시양속을 해칠 우려가 있고, 산업상 이용가능성이 있는 발명(특허법 제29조 제1항 본문 규정)으로 볼 수 없어 특허를 받을 수 없다. 생명공학분야 특허심사기준에서도 특허법 제29조 제1항 본문 규정에 준하여 인간을 특허 대상에서 제외시키도록 하고 있으며, 인간의 존엄성을 손상시키는 결과를 초래할 수 있는 발명은 공시양속 기준에 위배되어 특허를 받을 수 없다고 규정하고 있기 때문에 인간 배아 복제에 관한 특허출원은 역시 특허 받을 수 없다고 해석한다. 한편 의약분야 심사기준에서는 기 배출된 사람의 혈액, 종양, 모발 등을 원료로 이용하여 의약을 제조하는 발명은 산업에 이용할 수 있는 발명으로 보아 특허가능한 것으로 기재하고 있다. 예를 들어 인간의 암세포주의 경우 기 배출된 것으로 인정되어 기타 가능한 미생물로 보아 특허 허여되고 있다. 그러나 인간 배아 간세포의 특허 대상 여부에 대하여 살펴보면 기 배출된 인간의 암 세포주와 같이 특허 허여 대상처럼 여겨질 수도 있으나 인간의 배아 간세포는 인간의 수정란으로부터만 얻을 수 있으므로 배아를 인간으로 본다면 간세포를 얻기 위해서는 이를 파괴해야 하므로 인간의 존엄성을 손상시키고 공

35) 이성우, "특허법과 생명윤리기본법의 역할", 「생명윤리 기본법 무엇이 문제인가 보고서」, 국가과학기술연구회, 2001, 54면.
서양속을 해치는 발명에 해당하고 산업상 이용가능성이 있는 발명으로 볼 수 없어 허위로 받을 수 없다 하겠다. 하지만 배아 간세포의 막대한 임상적 산업적 활용성 때문에 영국 동지에서 인간 배아의 배양이 수정 후 14일까지 연구를 허용하는 추세를 반영할 때 배아를 인간으로 보아야 할 것인가와 인간 배아 간세포의 특허성 여부는 국제적인 논의 동향 및 국내산업에 미치는 효과 등을 고려하여 숙고하여야 할 문제이다.

(5) 국제법에서의 문제

UNESCO는 산하에 IBC(International Bioethics Committee)를 설치 운영하여 인간유전자와 인권에 관한 선언(Universal Declaration on the Human Genome and Human Right)에서 인간복제를 금지하도록 하였고, 세계보건기구(WHO)도 제15차 총회에서 '인간복제는 윤리적으로 받아들여질 수 없으며, 인간의 존엄성과 도의에 반하는 것'이라는 결의를 채택한 바 있다.

37) 조상근·김용현, “복제인간과 그 법률관계”, 「사회과학론집 제19권 제2호 통권 33호」, 대전대학교 사회과학연구소, 2000, 14면.
2. 기존 법절서 변형의 필요성

인간복제도 현실로 이루어진다면 위와 같은 여러 법적 문제가 발생될 것이 자명하다. 그렇다면 이러한 문제들을 간과할 수 없고 현실에서 최적의 문제해결을 위해 우리는 관련법을 개정하고 새로운 입법을 행하여야 한다. 헌법적인 문제, 민법적인 문제, 형법적인 문제 등에 있어서 가장 중요한 이슈는 복제개인을 하나의 독립된 인격체로 봐야한다. 하나의 독립된 인간으로 본다면 기존의 인간사회 법절서를 그대로 작용하면 되겠지만, 문제는 복제개인이 과연 인간과 아주 복같은 인간성을 갖고 다른 사회적 문제를 넘지 않는다는 한도에서만 인정될 수 있는 것이다. 그리고 복제개인을 인간으로 보지 않고 하나의 물건으로 본다면 그것의 관리가 용이하지는 않을 것이라고 본다. 이러한 문제점들이 발생하는 것은 그리 멀지 않은 현실일 것이다.

이러한 문제들이 산재해 있기 때문에 복제개인의 문제는 신중히 고려되어야 할 문제이며 만일 인정한다고 하면 공상병화의 근거한 장면처럼 되지 않기 위해선 적절한 통제와 육성이 조화를 이루어야 할 것이다. 그러기 위해서는 반드시 강력한 법조리와 개정을 통하여 법의 공복상태가 이루어지지 않도록 노력을 야만 할 것이다. 결론적으로 볼 때, 인류 멸망을 가져올지도 모르는 부작용을 막기 위해서 사전 입법 조차와 guide line의 채택은 필수적이라고 할 수 있을 것이다. 다만, 인간복제를 통한 질병의 치료 등의 유익한 행위를 위해서는 장려할 수 있는 법안도 함께 마련되어야 할 것으로 보인다.

3. 인간복제와 관련된 국내외의 입법례

(1) 외국의 입법례

각 국의 입법례를 살펴보면 엄격규제형, 연구자유 존중형, 기타로 분류할 수 있다.
영국의 경우 잘 알려져 있다시피 현제 전 세계적으로 치료용 배아복제를 2001
년 1월 22일에 상원, 하원을 거쳐서 국가법으로 명시적으로 허용했는데 명시적으
로 국법에 허용한 나라는 영국이 유일하다. 그것도 엄격한 국가 감독하에서 영
국도 제한적으로 허용하고 있을 뿐이다. 주요내용은 인간배아를 사용한 모든 연
구는 이미 영국의 경우에 90년에 제정된 인간수정 및 발생학법에 따라서 국가기
관 HFEA의 인가를 받아서 하게 되어 있다. 또한 배아복제 연구의 경우에도
HEFA는 해당 연구의 목표를 상취할 아무 다른 수단이 없다는 것을 반드시 확인
해야만 이 연구를 착수하게 허가를 하게 되어 있다. 영국 정부는 또한 유럽에서
는 최초로 의학 연구 목적의 인간 배아 복제를 승인했다. 39) 그리고 더 나아가 영
국은 맞춤아기의 출산을 허용함으로써 심각한 병을 앓고 있는 어린이들의 부모
에게 허용하고 있다. 40) 다만, 이러한 인간 배아 복제도 아기 본인을 위한 유전자
조작은 허용되지 않으며, 생식용 복제는 형사범죄로 간주되고 있다.

두 번째 미국의 경우는 배아복제를 허용하는 나라로 언론에 잘못 알려져 있는
데, 실제로 미국은 그렇지 않다. 미국은 1980년대 초에 레이건 정부의 결정 이래
로 인간 배아연구에 대해서 연방 정부의 자금지원이 일체 금지되어 왔다. 다만
미국은 정부차원과 민간차원을 이원화해서 총 정책이 진행되어 왔기 때문에 민
간차원의 연구지원은 연방정부가 간섭하지 않는 전통이 있을 뿐이다. 이 배아
간세포 연구와 관련해서는 2000년 8월 25일에 제정된 인간 간세포 연구 NIH(미
국 국립보건원)지침이 제정되었는데, 이 지침에 따르더라도 연방자금의 지원을
받는 과학자들은 배아 간세포를 직접 만들 수는 없고 민간자금 지원으로 만들어
진 간세포를 연방자금을 가지고 연구를 하는 과학자들이 넘겨받아야만 연구를
할 수가 있다. 그런데 이때 주목해야 될 점은 이때 사용할 수 있는 간세포의 출
처가 자유로운 것이 아니고 제한을 했다는 것이다. 즉 연구목적으로 잘만된 배
아나 체세포 복제를 이용해서 만들어진 배아는 이 경우에도 NIH지침에 금지가
되어 있다. 오직 병방치료용으로 보관중인 임여배아 그리고 사망한 태아의 조직
을 이용한 간세포 연구만 미국도 허용을 한 것이다. 근본적으로 미국은 형법적

제한보다는 행정적(연구비지원중단, 국가의 허가) 또는 민사적(연구성과의 물수, 손해배상의 청구) 규제를 통하여 인간복제를 금지하면서 일정한 분야의 연구는 제도적으로 보장하겠다는 입장을 가지고 있는 것으로 보인다.41)

세 번째 일본의 경우는 2000년11월30일에 참의원에서 통과된 인간에관한복제기술등의규제에관한법률에 따르면 복제기술 또는 특성유형합성기술에 의해 제작된 배아, 이것은 일본법에 특정 배아라고 지정을 했는데 이런 특정배아를 사람이나 동물의 자궁에 이식하는 것을 금지하였으며 이런 특정배아의 창출과 양도 및 수입은 문부과학대신이 특정배아의 취급에 관한 지침을 따로 제정해서 엄격히 규제하고 감독을 하도록 되어 있다. 그래서 특히 배아복제의 경우에 이 것을 허용을 한다. 금지를 한다는 명시적인 언급이 없고 아마 문부과학대신이 제정하는 지침에 따라서 선별적으로 허용하는 것으로 짐작이 된다.

그 다음에 영국, 미국, 일본의 경우는 상당히 예외적이고 세계에 있는 대부분의 나라의 사실은 그 다음 번에 속해있는 뉴 브런swick 나 네 번째나 다섯 번째에 속한 나라들이 다. 네 번째의 독일, 프랑스, 이탈리아, 오스트리아, 스위스, 아일랜드, 영국, 폴란드, 덴마크, 노르웨이, 루니아, 브라질, 페루 등의 많은 나라들은 불임치료 이외의 목적을 위한 모든 인간 배아연구는 엄격히 아직도 금지를 하고 있는 실정이다.

다섯 번째로 그 이외에 캐나다, 스웨덴, 핀란드, 스페인, 네덜란드, 벨기에 등은 연구목적의 배아창출이나 배아복제는 금지하지만 불임치료용으로 만들어진 임여배아의 연구목적 사용, 그러나 배아 간세포 연구는 허용을 하고 있다.

(2) 국내의 입법례

1) 생명 윤리 관련 법률의 제정 경과

1983년에 생명공학연구의 기반을 조성하고 생명공학을 효율적으로 육성・발전시키기 위해 제정된 생명공학육성법, 2000년에 들어오면서 인간배아줄기세

포연구가 발전하고 인간위약제에 성공하자 인간위약연구를 규제하기 위해 마련된 과학기술부 생명윤리자문위원회의 생명윤리기본법(가칭), 생명윤리기본법의 기본 골격이 과학계의 의견을 제대로 수렴하지 못한다고 판단되어 생명윤리자문위원회의 건의서를 토대로 만들어진 과학기술부 인간위약지급지원기시포연구등에관한법률, 그리고 정부주도의 생명윤리 및 안전 관련 입법안으로 보건복지부가 별도로 추진한 생명윤리및안전에관한법률이 있었다.\(^2\)

이러한 생명 윤리 관련 법률의 제정과 기존 법률의 개정이 논의되는 가운데 중요한 쟁점으로 떠오른 것들에는 다음과 같은 것들이 있었다. 먼저, 포괄적 생명윤리기본법을 만들 것인이 아니면 주요이슈별 개별 법률을 만들 것인가가 첫 번째 문제였고, 둘째로 연구의 허용범위를 어디까지로 할 것인가, 그리고 마지막으로 국가생명윤리위원회의 위상과 역할을 어떻게 정할 것인가가 주요한 쟁점이었다.

2) 현행 생명 윤리 관련 법률

위와 같은 법률의 제정 경과를 거쳐서 제정되고 개정된 것이 현행 법률이다. 이하에서는 현행 생명 윤리 관련 법률인 생명공학육성법, 생명윤리및안전에관한법률에 대해서 간단히 살펴보기로 하겠다.

먼저, 생명공학육성법은 1983년 12월 30일에 제정되었으며, 2003년 12월 30일에 개정되어 공포되고 2004년 7월 1일 개정되는 내용이 시행되어진다. 총 20개의 조문으로 구성되고 생명공학의 육성과 발전에 그 목적이 있다고 할 것이다.\(^3\) 또한, 생명공학육성법 시행령이 2004년 7월 1일에 개정된 내용이 시행된다. 이 법은 생명공학의 육성과 발전에 그 목적을 두어 인간위약의 오·남용의 문제를 해결하는데 있어 적당하지 않다고 볼 수 있다. 그러하여 생명윤리및안전에관한법률이 2004년 1월 29일 제정 공포되었다. 이 법은 2005년 1월 1일부터

\(^2\) 박은정, "생명윤리 관련 법률의 제정 방향", 생명공학육성과 생명윤리의 조화를 위한 토론회, 생명공학연구원, 2003, 3-8면.

\(^3\) 생명공학육성법 제1조.
시행되어지며, 인간복제에 대한 직접적인 규제를 하는 관련 법률이 필요하다. 생명윤리및안전에관한법률은 55개의 조문으로 구성되어 있으며, 인간의 존엄과 가치를 존중하는 것을 금지하고 질병치료에 목적을 두고 있다. 또한, 인간복제와 관련된 범죄의 생성, 관련기관의 설치, 그리고 이 법을 위반했을 경우의 벌칙 등 인간복제와 관련된 종합적 법률이라고 할 수 있다.

V. 결 어

뉴질레너엄이 개시 되지 이제 4년, 인류는 예고된 대로 '지식 시대'의 문을 들어서 더욱 한층 이를 실현시켜 나가고 있다. 이 시대의 중심화두로는 이념도 민주화도 민족주의도 평화도 아닌 지식이 차지하고 있다. 엘런 토폴러의 권력이동은 서서히 진행되어 정치 권력자, 자본가에게서 지식전문가로 옮가고 있고 그 변화의 첨단에 IT, BT, NT 등 첨단기술 지식인이 자리하고 있다. 그 근본적 원인은 이 분야의 가공할 부가가치 창출력이 개인, 기업, 국가의 부와 권력을 뒤 promin고 있기 때문이다. 그 중에서도 발군의 부가가치 창출력을 내재하고 있는 것이 BT분야이고 BT의 꿈이라고 할 수 있는 것이 인간복제 기술이다. 따라서 세인의 이목이 집중된 이곳에 우리도 매진할 수밖에 없는데 문제는 이 분야가 내포한 양면성 즉, 광범위에의 억측과 인류 파멸의 위협이라는 두 테마를 여하히 조화시켜 나갈 것인가 하는 문제가 갑자로 남아 있다는 데 있다.

근래 자연과학의 발전 속도는 눈부셔서 사회과학, 인문과학이라면 참이 아닌 속도로 빠르게 이어울 끝내 멀리 달아나고 있다. 그러나 인간복제라는 문제는 자연과학의 승리에만 만기기는 너무나도 위험한 만한 수레이다. 인간복제의 문제는 기술의 발전도 중요하지만 사회과학 및 인문과학의 적절한 조화 속에서 인간의 내재적 한계점을 찾아내고 자율규제의 원칙을 확립하고 새로운 질서를 정립하면서 발전해 나가지 않는다면 인류공명의 우려가 현실로 나타날 수도 있는 분야이다.

인간 복제 기술은 현재로서 자연과학의 총아로 주목받고 있는데 무서운것이 있

44) 생명윤리및안전에관한법률 제1조.
으나 그 파급 영향으로서 사회과학의 법적, 지리학 형성운동, 경제학, 인문과학의 종교, 인류, 사회학 등 각 분야에 메가톤급 충격이 예고되고 있음에도 불구하고 이 분야의 연구는 아직 초보 단계에 머물고 있긴 하다.

본 논문에서는 인간복제가 인류 각 분야의 기존 질서에 키칠 가공할 충격의 내용을 좀더 구체적으로 예시하고 이에 대비한 새 질서의 형성을 위하여 각 분야별로 시급한 연구 노력의 필요성과 나아갈 방향을 제시하는데 일차적 독서이 있다. 앞으로 이 분야에서 더 많은 각계의 연구 노력이 활발히 진행되어 불확실한 미래에 올바른 길잡이가 되어주었으면 하는 마음 간절하다.

[주제어] 인간복제, 배아복제, 장기복제, 줄기세포, 생명윤리, 인간복제 관련법

참고 문헌

* 김철수, 「헌법학개론(제11정신신판)」, 박영사, 1999.
* 이인경, 「인간 유전자복제·조작 시대의 윤리」, 「연세학술논집 제26집」, 1997.
* 임재준, 「배아 복제 및 배아 간세포 기술의 특허 현황과 전망」, 특허청 생명공학세미나 자료, 2000.
* 정동신, 「생명복제와 인간복제에 대한 연구」, 「창주과학대학 논문집 제24집」, 1998.
* 조상근 · 김용형, 「복제인간과 그 법률관계」, 「사회과학논문집 (제19권 제2호 통권3호)」, 대전대학교 사회과학연구소, 2000.
* 조인래, 「인간복제의 방법과 역사」, 기독교대학설립동역회, 1993.
* 황무임, 「인간배아 복제에 관한 헌법적 고찰」, 「복지행정연구 제17집」, 안양대학교 복지행정연구소, 2002.
A shock and the correspondence that a human reproduction gives to the existing law order

A field discussed most actively in a current society has a biotechnology field and an informatization field. A lot of study and effort are requested to a biotechnology field and it is considered to be the important industry that can conquer a market of the world according to a degree of the development. Specially, a human reproduction will be expected the most revolutionary development in a biotechnology field, and prospective with the revolutionary means that can cure a human incurability disease.

However, development of these biotechnologies is to bump against a wall called life ethics. Specially, a human reproduction is encountering a severe objection of a religion group and bring about many ethic problem. The purpose of this study looks into these social problems(specially legal problem), it is to find the countermeasure in question.