X_n에서 Ricci 곡률 텐서 R_ij의 Conformal Change에 관하여

1. Introduction
2. Preliminaries
3. Conformal Change of the Ricci Tensor Rij
X_n에서 Ricci 곡률テン서 R_{ij}의 Conformal Change에 관하여

Conformal change of the Ricci curvature tensor R_{ij} in X_n

1994年 2月

仁荷大學校 教育大學院

數學教育專攻

金義坤

247536
X_n에서 Ricci 곡률텐서 R_{ij}의 Conformal Change에 관하여

Conformal change of the Ricci curvature tensor R_{ij} in X_n

1994년 2월

指導教授 曹 仲 鉉

이 논문을 碩士學位論文으로 提出함

仁荷大學校 教育大學院

數學教育専攻

金 義 坤
이 논문은 金義坤의 碩士學位論文으로 認定함

1994年 2月

主審________________

副審________________

副審________________
국문要約

본 논문의 목적은 \(n \)차원 리만공간 \(X_n \)에서의 리즈곡률テン서의 Conformal change에 의한 변환을 연구하는 데 있다.

본 논문에서는 \(n \)차원 리만공간에서의 리즈곡률テン서의 conformal change에 의한 변환 \(R_y \)과 \(\overline{R_y} \) 사이의 관계를 \(g_y \)의 함수로 나타냈다.
ABSTRACT

The purpose of the present paper is to introduce the conformal change of
the Ricci tensor R_{ij} in n-dimensional Riemannian space X_n. We derive the
change $R_{ij} \rightarrow \tilde{R}_{ij}$ of two n-dimensional Ricci curvature tensor introduced by
the conformal change in terms of g_{ij}.
Contents

Abstract ... i
Korean Abstract .. ii
I. Introduction .. 1
II. Preliminaries ... 3
III. Conformal change of the Ricci tensor R_{ij} 6

References .. 13

247536
I. INTRODUCTION

Let X_n be a Riemannian space based on metric defined by

\begin{equation}
(1.1) \quad ds^2 = g_{ij}dx^i dy^j \quad (i, j = 1, 2, \cdots, n).
\end{equation}

Where the coefficients g_{ij} are functions of the coordinates x^i.

The quadratic differential form in the second member of (1.1) is called a Riemannian metric and a space which is characterized by such a metric is a Riemannian space.

Let X_n be an n-dimensional Riemannian space defined by a fundamental real metric tensor g_{ij} whose determinant is

\begin{equation}
(1.2) \quad g = \text{Det}((g_{ij})) \neq 0.
\end{equation}

By (1.2), there is a unique tensor $g^{ij} = g^{ji}$ defined by

\begin{equation}
(1.3) \quad g_{ij}g^{jk} = \delta^k_j.
\end{equation}

The tensor g_{ij} and g^{ij} will serve for raising and/or lowering indices of tensor quantities in X_n in the usual manner.
Let X_n be a generalized n-dimensional Riemannian space referred to a real coordinate system x^i, which obeys coordinate transformations $x^i \to \bar{x}^i$ for which

\begin{equation}
\text{Det} \left(\frac{\partial \bar{x}^i}{\partial x^j} \right) \neq 0.
\end{equation}

The purpose of the present paper is to introduce the conformal change of the Ricci curvature tensor R_{ij} in X_n.

We derive the change $R_{ij} \to \bar{R}_{ij}$ of two n-dimensional Ricci curvature tensors introduced by the conformal change (3.1).
II. PRELIMINARIES

In this section, we introduce several concepts, notations and theorems in obtained by without proof ([1], [2], [3]).

These relations will be needed in our further considerations.

A) The metric tensor g_{ij} is a symmetric tensor.

That is,

\begin{equation}
 g_{ij} = g_{ji}.
\end{equation}

B) The notations are defined by

\begin{align*}
 A_{(ij)} &= \frac{1}{2} (A_{ij} + A_{ji}) \\
 A_{[ij]} &= \frac{1}{2} (A_{ij} - A_{ji})
\end{align*}

C) The functions are defined by

\begin{equation}
 [k, ij] = \frac{1}{2} \left(\frac{\partial g_{jk}}{\partial x^i} + \frac{\partial g_{ik}}{\partial x^j} - \frac{\partial g_{ij}}{\partial x^k} \right),
\end{equation}
and

\[(2.4)\quad \{ k \}_{ij} = g^{kk}[h, ij].\]

Where (2.3), (2.4) are called the Christoffel symbols of the first and second kind respectively.

D) The functions (2.3), (2.4) are symmetric with respect to the indices i, j.

That is,

\[(2.5a)\quad [k, ij] = [k, ji],\]

\[(2.5b)\quad \{ k \}_{ij} = \{ k \}_{ji}.\]

E) The tensors are defined by

\[(2.6)\quad R^a_{ijk} = \frac{\partial}{\partial x^j} \{ a \}_{ik} - \frac{\partial}{\partial x^k} \{ a \}_{ij} + \{ a \}_{bj} \{ b \}_{ik} - \{ a \}_{bk} \{ b \}_{ij},\]

and

\[(2.7)\quad R_{ij} = R^a_{ij a},\]

where (2.6), (2.7) are called the curvature tensor and the Ricci curvature tensor respectively.
F) Any other form of the Ricci curvature tensor is

\[
R_{ij} = \frac{\partial^2 \log \sqrt{g}}{\partial x^i \partial x^j} - \frac{\partial}{\partial x^a} \{ a \} \{ i j \} + \{ a \} \{ b \} \{ i a \} - \{ b \} \{ i j \} \frac{\partial}{\partial x^b} \log \sqrt{g}.
\]
III. Conformal change of the Ricci tensor R_{ij}

In this section, we investigate the change of the several functions induced by a conformal change of the tensor g_{ij}.

Consider two n-dimensional Riemannian space X_n, and \overline{X}_n. We say that X_n and \overline{X}_n are conformal if and only if

\begin{equation}
\overline{g}_{ij} = U^2 g_{ij},
\end{equation}

where $U = U(x)$ is an arbitrary functions of position with at least two derivatives.

Agreement (3.1). Throughout this section, we agree that, if T is a function of g_{ij}, then we denote by \overline{T} the same function of \overline{g}_{ij}. In particular, if T is a tensor, so is \overline{T}.

Theorem (3.1). If X_n and \overline{X}_n are conformal, the following relation
holds:

(3.2) \[\bar{g}^{ij} = U^{-2}g^{ij}. \]

Proof. In virtue of (1.3) and Agreement (3.1), we have (3.2). □

Theorem (3.2). The conformal change (3.1) induces the following change:

(3.3) \[[ij, k] = U^2[ij, k] + (2U_i g_{j}k - U_k g_{ij})U, \]

where \(U_i = \frac{\partial U}{\partial x^i} \).

Proof. In virtue of (2.3) and Agreement (3.1), we have

(3.4) \[[ij, k] = \frac{1}{2} \left[\frac{\partial \bar{g}_{jk}}{\partial x^i} + \frac{\partial \bar{g}_{ik}}{\partial x^j} - \frac{\partial \bar{g}_{ij}}{\partial x^k} \right]. \]

Substituting (3.1) into (3.4),

\[\frac{\partial \bar{g}_{jk}}{\partial x^i} = \frac{\partial}{\partial x^i}(U^2 g_{jk}) = 2U_i g_{jk} + U^2 \frac{\partial g_{jk}}{\partial x^i}. \]

Similarly,
\[\frac{\partial g_{ik}}{\partial x^j} = 2UU_j g_{ik} + U^2 \frac{\partial g_{ik}}{\partial x^j}, \quad \cdots \quad (2) \]

(3.5)

\[\frac{\partial g_{ij}}{\partial x^k} = 2UU_k g_{ij} + U^2 \frac{\partial g_{ij}}{\partial x^k}. \quad \cdots \quad (3) \]

Substituting (3.5) into (3.4), we have (3.3).

THEOREM (3.3). The tensor \(\{ \frac{k}{ij} \} \) is transformed by the conformal change (3.1) as following:

(3.6)

\[
\left\{ \frac{k}{ij} \right\} = \left\{ \frac{k}{ij} \right\} + \frac{1}{U} (2U_i \delta^k_j - U_aj^{ak}g_{ij}).
\]

PROOF. In virtue of (3.1), Agreement (3.1), (2.2), (2.3), (2.4), and (3.3), the relation (3.6) may be derived as in the following way:

\[
\left\{ \frac{k}{ij} \right\} = \frac{a^{ak}[ij,a]}{U^2 g^{ak}[ij,a] + U(2U_i \delta^k_j - U_aj^{ak}g_{ij})} \\
= \frac{1}{U^2} g^{ak}[ij,a] + \frac{1}{U} (2U_i \delta^k_j - U_aj^{ak}g_{ij}) \\
= \left\{ \frac{k}{ij} \right\} + \frac{1}{U} (2U_i \delta^k_j - U_aj^{ak}g_{ij}).
\]
Remark (3.4). The quantity \(g \) is conformal invariant. That is

\[
\bar{g} = g.
\]

Proof. The relation (3.7) obtained by [1].

Theorem (3.5). The tensor \(B_{ij} \) is transformed by the conformal change (3.1) as following:

\[
\bar{B}_{ij} = B_{ij} + \left(\frac{1}{U} - \frac{1}{U^2} \right) C_{ij},
\]

where

\[
\bar{B}_{ij} = \frac{\partial}{\partial x^a} \left\{ \frac{a}{i_j} \right\},
\]

\[
C_{ij} = 2U_i U_j - U_a U_b g^{ab} g_{ij}.
\]

Proof. In virtue of (3.9) and Agreement (3.1), we have

\[
\bar{B}_{ij} = \frac{\partial}{\partial x^a} \left\{ \frac{a}{i_j} \right\}.
\]

Substituting (3.6) into (3.11), by using (3.9) and (3.10), we have

\[
\bar{B}_{ij} = \frac{\partial}{\partial x^a} \left\{ \left\{ \frac{a}{i_j} \right\} + \frac{1}{U} (2U_i \delta^a_j - U_b g^{ab} g_{ij}) \right\}
\]
\[D_{ij} = D_{ij} + \frac{1}{U} (E_{ij} - F_{ij}) + \frac{1}{U^2} ((n + 2)U_i U_j - 2U_a U_b g^{ab} g_{ij}), \]

where

\[E_{ij} = 2U_i \left\{ \begin{array}{c} \{ a \\ b_j \} \\ a_i \end{array} \right\}, \]

\[F_{ij} = g^{\alpha a} U_\alpha. \]

Proof. In virtue of (3.1), Agreement (3.1), (2.2), (3.6), (3.13), (3.14) and (3.15), the relation (3.12) may be derived as in the following way:

\[D_{ij} = D_{ij} \]

\[= \left(\left\{ a \right\} + \frac{1}{U} (2U_i \delta^a_j - U_\alpha g^{\alpha a} g_{bj}) \right) \]
\begin{align*}
\times \left(\{ b \}_{ia} + \frac{1}{U} (2U_i \delta^b_a - U_a g^{ab} g_{ia}) \right) \\
= \{ a \}_{bij} \{ b \}_{ia} + \frac{1}{U} \left(2U_i \{ a \}_{ij} \right) + 2U_a \{ a \}_{ij} \\
+ \frac{1}{U^2} (n + 2) U_i U_j - 2U_a U_b g^{ab} g_{ij} \\
= D_{ij} + \frac{1}{U} (E_{ij} - F_{ij}) + \frac{1}{U^2} ((n + 2) U_i U_j - 2U_a U_b g^{ab} g_{ij}).
\end{align*}

Theorem (3.7). The tensor G_{ij} is transformed by the conformal change (3.1) as following:

(3.16) \[\overline{G}_{ij} = G_{ij} + \frac{1}{U} H_{ij}, \]

where

(3.17) \[G_{ij} = \{ b \}_{ij} \frac{\partial}{\partial x^b} \log \sqrt{g}, \]

(3.18) \[H_{ij} = (2U_i \delta^b_j - U_a g^{ab} g_{ij}) \frac{\partial}{\partial x^b} \log \sqrt{g}. \]

Proof. In virtue of (3.17) and Agreement (3.1), we have

(3.19) \[\overline{G}_{ij} = \overline{\{ b \}_{ij}} \frac{\partial}{\partial x^b} \log \sqrt{g}. \]

Substituting (3.6), (3.7), (3.18) into (3.19), we have (3.16).
Theorem (3.8). The Ricci curvature tensor R_{ij} is transformed by the conformal change (3.1) as following:

$$\bar{R}_{ij} = R_{ij} + \frac{1}{U}(C_{ij} + E_{ij} - F_{ij} + H_{ij}) + \frac{1}{U^2}(nU_iU_j - U_aU_bg^{ab}g_{ij}).$$

Proof. In virtue of (2.8) and Agreement (3.1), we have

$$\bar{R}_{ij} = \frac{\partial^2 \log \sqrt{\bar{g}}}{\partial x^i \partial x^j} - \frac{\partial}{\partial x^a} \left\{ \frac{a}{ij} \right\} + \left\{ \frac{a}{ij} \right\} \left\{ \frac{b}{ia} \right\} - \left\{ \frac{b}{ij} \right\} \frac{\partial}{\partial x^b} \log \sqrt{\bar{g}}.$$

Substituting (3.7), (3.8), (3.12) and (3.16) into (3.21), the relation (3.20) may be expressed by the following way:

$$\bar{R}_{ij} = \frac{\partial^2 \log \sqrt{\bar{g}}}{\partial x^i \partial x^j} - B_{ij} + \bar{D}_{ij} - \bar{G}_{ij} = R_{ij} + \frac{1}{U}(C_{ij} + E_{ij} - F_{ij} + H_{ij}) + \frac{1}{U^2}(nU_iU_j - U_aU_bg^{ab}g_{ij}).$$
REFERENCES

감사의 글

이 논문이 나오기까지 지도편달을 아끼지 않으신 조중현 교수님과 수학과 교수님들께 감사 드립니다.
아울러 항상 웃음과 용기를 준 아내와 딸 민혜에게 고마움을 느끼고 어머님 병원도 하루빨리 완쾌하시길 빕니다.

1993. 12.