Characteristics of mesozooplankton sound-scattering layer in the Pacific Summer Water, Arctic Ocean

Hyoung Sul La a,*, Myounghee Kang b, Hans-Uwe Dahms c, Ho Kyung Hae, Eun Jin Yang a, Hyungbeen Lee e, Young Nam Kimber, Kyung Ho Chunge, Sung-Ho Kang a

a Korea Polar Research Institute, Incheon 406-840, Republic of Korea
b Cyeongang National University, Tongyeong 650-160, Republic of Korea
c Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC and National Sun Yat-sen University, Kaohsiung 80424, Taiwan, ROC
d Department of Ocean Sciences, Inha University, Incheon 402-751, Republic of Korea
e Gyeongsang National University, Tongyeong 650-160, Republic of Korea
f National Fisheries Research and Development Institute, Republic of Korea
g Korea Marine Environment Management Corporation, Seoul 135-870, Republic of Korea

ARTICLE INFO
Available online 14 January 2015

Keywords: Arctic Ocean Canada Basin Northwind Ridge Sound-scattering layer Arctic copepods Eddy Pacific Summer Water

ABSTRACT
This study investigated the variations in the sound-scattering layer (SSL) that were reflected from the mesozooplankton communities around the Northwind Ridge in the western Arctic Ocean. A multi-frequency acoustic survey was conducted to reveal the SSL distribution dominated by Arctic copepods in the early summer of 2010. The SSL distribution was well correlated with the salinity, nutrients and chlorophyll a (chl-a) associated with the features of the Pacific Summer Water (PSW). The SSL was observed primarily in the uppermost 100 m of the PSW, which provided a desirable habitat for Arctic copepods due to high nutrients and phytoplankton biomass. The highest density SSL was observed in the eddy-like structure of the PSW, which is most likely because of the high nutrients and chl-a. High regional densities in the SSL indicated that Arctic copepods provide a large portion of the biomass and contribution to the food webs in the PSW, in the western Arctic Ocean.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction
Mesozooplankton play a key role in the pelagic food webs of the Arctic Ocean and have a large influence on the energy flow and function of productive marine ecosystems (Riser et al., 2008). In the Arctic mesozooplankton are predominantly comprised of calanoid copepods (Kosobokova and Hopcroft, 2010). Arctic copepods are rich in lipids and represent an important food source for other zooplankton species, pelagic fish such as polar cod (Boreogadus saida) (Lonne and Gulliksen, 1989); capelin (Mallotus villosus) (Hassell et al., 1991); and seabird species, such as the little auk (Alle alle) (Weslawski et al., 1999). Some Arctic copepods species feed on shelf-derived primary production sources (Plourde et al., 2005) and require mechanisms to return to their pelagic environments to undergo diapause (Conover, 1988; Cottier et al., 2006). Although pelagic Arctic copepods are of major importance in Arctic food webs, their pathways and quantitative roles in the Arctic ecosystem are still not well known (Iken et al., 2010). Some Arctic copepods visit offshore to complete their life cycle. Therefore, variability in offshore transport can play an important role in modifying the shelf and basin ecosystems.

In the vicinity of the Northwind Ridge, water masses of the Pacific and Arctic Ocean undergo unique mixing patterns leading to changes in the Arctic ecosystem (Grebmeier and Harvey, 2005). This mixing involves wind-forced upwelling events (Munchow and Carmack, 1997) and small-scale eddies, which bring episodic pulses of nutrients into the euphotic zone and can thus affect the primary production (Benitez-Nelson et al., 2007). The Canada Basin includes numerous subsurface eddies in the halocline of Pacific-origin water (Manley and Hunkins, 1985; Muench et al., 2000; Honjo et al., 2010; Nishino et al., 2011). In addition, anomalous sea-ice reductions have been observed during the summer months, with spatial patterns that are unusual for the western Canada Basin (Maslanik et al., 1999; Shimada et al., 2006). The ice reduction is thought to be caused primarily by an increased flow of warm Pacific Summer Water (PSW) from the Bering Strait into the Arctic Ocean (Shimada et al., 2006; Woodgate et al., 2012). The lateral exchange of biological, chemical, and physical properties can impact the shelf-basin exchange mechanism (Walsh, 1995). Therefore, this region can be used as a natural laboratory to assess the relationship between the ecological characteristics of Arctic copepods and changes in environmental conditions related to the mid-ocean warm eddy of PSW. In addition, few studies have attempted to describe the response of
Arctic copepods communities to the passage of mesoscale warm eddies in the western Arctic Ocean.

In this study, acoustic methods were used to observe the horizontal and vertical distribution of SSL, which is dominated by Arctic copepods. The SSL represents a concentrated layer of marine organisms such as zooplankton aggregates and nekton that occur at specific depths (Zimmerman and Biggs, 1999; Benoît-Bird and Au, 2004; McManus et al., 2008). Acoustic system, which has been ubiquitously used, is considered to be the best tool for observing the spatial and temporal patterns of the vertical distribution of marine organisms (Clay and Medwin, 1977). Acoustic surveys can reflect the distribution of the most abundant species (Santora et al., 2000), and sample large volumes of water more rapidly than net sampling (Flagg and Smith, 1989). The target identities can be verified by net sampling (Foote and Stanton, 2000).

We conducted an acoustic survey using a multi-frequency acoustic system in the early summer of 2010 to observe variations in the SSL of Arctic copepods around the Northwind Ridge in the western Arctic Ocean. Our goal was to address the vertical and spatial distribution of Arctic copepods in relation to environmental conditions, including the physical and biogeochemical parameters of the PSW, and the existence of a mode-water eddy with warm core.

2. Materials and methods

The study was undertaken between 25 July and 2 August 2010 onboard the IBRV *Araon* (Fig. 1). The stations between 5 and 27 were used to detect warm water eddies between the Northwind Ridge and the Canada Basin. Acoustic, hydrographic (temperature and salinity), chemical (nutrients), and biological (chl-α) data were collected at each station (Table 1). Most stations were covered with sea ice except between St. 7 and 9. The presence of sea ice was defined as a region with sea ice covering more than 10% of the area (Arrigo et al., 2012).

2.1. Hydrographic data

At each station, conductivity-temperature-depth (CTD) measurements in the water column were recorded using a SeaBird 911+ sensor. An oxygen sensor was connected to the CTD system for dissolved oxygen measurements. All data were averaged into 1-m depth intervals to eliminate undesirable noise.

Water samples were analyzed for nutrients and chl-α. Discrete water samples were collected at each CTD station for nutrients (nitrate+nitrite, phosphate, silicate, and ammonium). Nutrients were analyzed with water samples collected at 0-, 5-, 10-, 15-, 20-, 25-, 35-, 50-, 70-, 90-, and 110-m depths using CTD-mounted Niskin water samplers. Nutrient analyses were performed using a Seal Analytical QuAAtro Autoanalyser connected to an autosampler with QuAAtro multitest methods and general absorptiometry nitrate+nitrite (Armstrong et al., 1967), phosphate and silicate (Grasshoff et al., 1983). Chl-α measurements were recorded at most stations (St. 5, 6, 8, 10, 13, 14, 16, 18, 21, 23, 25 and 27) using a fluorometer (TD-700, Turner Design Co.) after filtration through GF/F filters (24 mm) (Parsons et al., 1984).

Table 1

<table>
<thead>
<tr>
<th>Station</th>
<th>Date (DD/MM/YYYY)</th>
<th>Start time (UTC)</th>
<th>Stop time (UTC)</th>
<th>Latitude (N)</th>
<th>Longitude (E)</th>
<th>Depth (m)</th>
<th>Sea ice concentration (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>25/07/2010</td>
<td>16:21</td>
<td>18:00</td>
<td>75.000</td>
<td>160.000</td>
<td>2000</td>
<td>28.5</td>
</tr>
<tr>
<td>6</td>
<td>26/07/2010</td>
<td>17:11</td>
<td>18:35</td>
<td>75.028</td>
<td>159.475</td>
<td>1840</td>
<td>43.4</td>
</tr>
<tr>
<td>7a</td>
<td>27/07/2010</td>
<td>0:03</td>
<td>0:46</td>
<td>75.001</td>
<td>159.033</td>
<td>1110</td>
<td>6.6</td>
</tr>
<tr>
<td>8a</td>
<td>27/07/2010</td>
<td>3:35</td>
<td>4:15</td>
<td>74.994</td>
<td>158.494</td>
<td>950</td>
<td>9.1</td>
</tr>
<tr>
<td>9</td>
<td>27/07/2010</td>
<td>16:15</td>
<td>17:37</td>
<td>75.007</td>
<td>157.999</td>
<td>1030</td>
<td>6.6</td>
</tr>
<tr>
<td>10a</td>
<td>27/07/2010</td>
<td>20:37</td>
<td>21:27</td>
<td>75.002</td>
<td>157.508</td>
<td>1300</td>
<td>53.8</td>
</tr>
<tr>
<td>11a</td>
<td>28/07/2010</td>
<td>2:07</td>
<td>3:09</td>
<td>74.999</td>
<td>157.221</td>
<td>1550</td>
<td>46.5</td>
</tr>
<tr>
<td>12a</td>
<td>28/07/2010</td>
<td>4:57</td>
<td>6:48</td>
<td>75.003</td>
<td>156.966</td>
<td>2350</td>
<td>53.8</td>
</tr>
<tr>
<td>13</td>
<td>28/07/2010</td>
<td>9:20</td>
<td>11:10</td>
<td>75.004</td>
<td>156.503</td>
<td>3900</td>
<td>53.8</td>
</tr>
<tr>
<td>14a</td>
<td>29/07/2010</td>
<td>3:29</td>
<td>6:59</td>
<td>75.000</td>
<td>155.942</td>
<td>3904</td>
<td>71.5</td>
</tr>
<tr>
<td>15a</td>
<td>29/07/2010</td>
<td>22:53</td>
<td>2:33</td>
<td>75.216</td>
<td>156.047</td>
<td>3890</td>
<td>72.8</td>
</tr>
<tr>
<td>16</td>
<td>30/07/2010</td>
<td>5:20</td>
<td>7:23</td>
<td>75.401</td>
<td>156.048</td>
<td>2800</td>
<td>73.9</td>
</tr>
<tr>
<td>17</td>
<td>30/07/2010</td>
<td>17:15</td>
<td>19:18</td>
<td>75.600</td>
<td>156.074</td>
<td>2490</td>
<td>74.3</td>
</tr>
<tr>
<td>18a</td>
<td>31/07/2010</td>
<td>22:34</td>
<td>23:34</td>
<td>75.795</td>
<td>155.959</td>
<td>2050</td>
<td>75.4</td>
</tr>
<tr>
<td>19a</td>
<td>31/07/2010</td>
<td>4:27</td>
<td>5:28</td>
<td>76.003</td>
<td>156.039</td>
<td>1280</td>
<td>74.1</td>
</tr>
<tr>
<td>20a</td>
<td>31/07/2010</td>
<td>21:20</td>
<td>21:50</td>
<td>75.984</td>
<td>156.458</td>
<td>1080</td>
<td>72.4</td>
</tr>
<tr>
<td>21a</td>
<td>1/08/2010</td>
<td>0:43</td>
<td>1:15</td>
<td>75.392</td>
<td>156.992</td>
<td>940</td>
<td>73.2</td>
</tr>
<tr>
<td>22</td>
<td>1/08/2010</td>
<td>12:00</td>
<td>12:47</td>
<td>76.000</td>
<td>157.483</td>
<td>620</td>
<td>76.4</td>
</tr>
<tr>
<td>23</td>
<td>1/08/2010</td>
<td>15:40</td>
<td>16:03</td>
<td>75.990</td>
<td>157.970</td>
<td>520</td>
<td>79.6</td>
</tr>
<tr>
<td>24a</td>
<td>1/08/2010</td>
<td>21:06</td>
<td>21:25</td>
<td>76.001</td>
<td>158.479</td>
<td>540</td>
<td>78.5</td>
</tr>
<tr>
<td>25a</td>
<td>2/08/2010</td>
<td>0:02</td>
<td>0:41</td>
<td>76.002</td>
<td>159.013</td>
<td>820</td>
<td>78.1</td>
</tr>
<tr>
<td>26</td>
<td>2/08/2010</td>
<td>5:55</td>
<td>8:03</td>
<td>75.999</td>
<td>159.531</td>
<td>1540</td>
<td>80.2</td>
</tr>
<tr>
<td>27</td>
<td>2/08/2010</td>
<td>17:01</td>
<td>17:50</td>
<td>75.993</td>
<td>160.032</td>
<td>2100</td>
<td>82.6</td>
</tr>
</tbody>
</table>

* Night (Rabindranath et al., 2011).
2.2. Net sampling

Mesozooplankton were collected with a NORPAC Bongo net (mouth area of 0.5 m\(^2\), 200-μm mesh) that was hauled vertically from 200 m to the surface. The nets were used to verify the composition of the SSL recorded in the echograms. Data were collected from 12 sampling stations and analyzed for mesozooplankton composition at 7 stations (St. 6, 8, 13, 16, 21, 25 and 27). The plankton catches were preserved with 4% borate-buffered formaldehyde and analyzed under a stereo-microscope after the cruise.

In the laboratory, each sample was split with a Folsom splitter into sub-samples of less than 500 individuals for taxonomic identification and counting. The species composition of each sample was determined by counting all mature animals in each sub-sample. Keys and taxonomic references were used for copepod identification. Sorting and identification of zooplankton samples were carried out as described by Falk-Petersen et al. (2008). The following taxonomic references were used: Sirenko (2001), Bucklin et al. (2010), Hopcroft et al. (2010), and Dvoretsky and Dvoretsky (2010). The copepod abundance (individuals m\(^{-3}\)) was calculated from eight CTD stations (St. 6, 8, 10, 13, 16, 21, 25, and 27) using a known volume filtered through a 330-μm mesh net, and quantified by the revolution counts of a flow meter attached to the center of the net mouth.

2.3. Acoustic measurements and analysis

Acoustic data were collected using a Simrad EK60 scientific echosounder system configured with a 38- and 120-kHz split-beam transducer. Transmission of pings and logging of the received signals was controlled using the Simrad ER60 software v. 2.0.0. The power settings were set to maximum, and the signal was transmitted at each frequency every 2 s with a pulse length of 1 ms. Other acoustic instruments were turned off to minimize frequency interferences. At all stations, the ship remained stationary for approximately 2–10 h, while the volume backscattering strengths (\(S_v\) dB re 1 m\(^{-1}\)) were collected in conjunction with CTD measurements and net castings. The echosounder was calibrated at all frequencies after the cruise.

The raw data files of the EK60 echosounder for 38 and 120 kHz were imported into the Echoview (ver. 5.3) acoustic data analysis software (Myriax, 2012). Data for the uppermost 200 m of the water column from the top were used to compare with eddy signatures. The background noise, which was amplified in the process of applying time-varied-gain (TVG) compensation to calculate the \(S_v\) increased with increasing water depth. Therefore, a weak signal, for example, similar to that of plankton, can be buried in relatively deep water because of accumulated background noise. The noise level depends on the distance from the transducer and can be removed using the time-varied threshold (TVT) function, as originally conceptualized by Watkins and Brierley (1996). The TVT function was applied to every ping for all \(S_v\) values at 38 and 120 kHz (Myriax, 2012). The TVT function is expressed in the following equation:

\[
TVT(r) = S_v + 20 \log(r) + 2α(r-1)
\]

where \(S_v\) is the volume backscattering strength at 1 m depth, \(r\) is the distance from the transducer (m), and \(α\) is the absorption coefficient (dB m\(^{-1}\)). The value of \(S_v\) is determined by examining the signal, with respect to the recording of noise, and fitting a TVG curve to it. Background noise can then be subtracted by using the TVT values in the linear domain from the original \(S_v\) values. Occasionally, non-biological signals, such as surface bubbles, the sea bottom, and false bottom echoes, were identified and manually excluded as bad data. The noise-filtered data were subsequently resampled into bins with dimensions of 1-m depth by 50 pings.

Multi-frequency techniques have been widely used to classify the acoustic backscatter for species classification (Madureira et al., 1993; Brierley and Watkins, 1996; Brierley et al., 1998; CCAMLR, 2010; Rabindranath et al., 2011; Fielding et al., 2012; La et al., 2015). The

![Fig. 2.](image-url) Fig. 2. The \(S_v\) echograms at 38 (a) and 120 kHz (b), the dB difference echogram (c), the 120 kHz \(S_v\) echogram that includes only Copepod by using the dB difference window of > 12 dB (d). This was made using the data around St. 15. The black band on the top was considered as no-data due to the presence of a non-biological noise containing ring down noise on the water surface. The vertical black band was made because some noise contaminated the data in that water column.
two-frequency dB difference (the difference in volume backscattering strength values at two frequencies) can be obtained by the following equation (Kang et al., 2002):

\[\Delta S_v = S_v(f_2) - S_v(f_1) \]

(2)

where \(S_v \) is the volume backscattering strength, and \(f_1 \) and \(f_2 \) are 38 and 120 kHz, respectively. To discriminate among three size groups of zooplankton, we defined appropriate windows for the dB difference (Madureira et al., 1993; Rabindranath et al., 2011). Mesozooplankton was defined by a \(\Delta S_v \) window of \(>12 \) dB, macrozooplankton/micronekton was defined by a \(\Delta S_v \) window of \(2-12 \) dB, and fish (with swim bladders) was defined by a \(\Delta S_v \) window of \(<2 \) dB. The representative echograms of 38 and 120 kHz \(S_v \) are shown in Fig. 2. The 120 kHz \(S_v \) echogram including only mesozooplankton by the dB difference was integrated from 10 m below transducer to 200 m and averaged for approximately 2 h during each CTD cast to determine an appropriate scale for analysis. The \(S_v \) was exported into Matlab\textregistered for further analysis to demonstrate the abundance and distribution of the sound-scattering organisms. For analysis the weighted mean depth (WMD) of scattering layer was calculated to find main depth of SSL for each station to observe the variability of the main scattering layer in the echogram (Roe et al., 1984).

3. Results

3.1. Characteristics of the water masses

At each station, the water column was characterized by a complex layering of water masses. The potential temperature–salinity diagram revealed the presence of four water masses, Surface Mixed Water (SMW), PSW, Pacific Winter Water (PWW), and Atlantic Water (AW) (Fig. 3). The presence of these water masses is typical for the Arctic Ocean (Honjo et al., 2010). The water column here is commonly stratified with a strong pycnocline between the SMW, which has a low temperature and salinity and the PSW, which has a high temperature and salinity. The salinity of the SMW drooped down to 26 psu in the upper layer (from the surface to 40-m depth), being affected by freshening from sea ice melts and terrestrial freshwater input (Honjo et al., 2010). The salinity of the PSW ranges from 30 to 32.5 psu between 40 and 150 m. The PWW and AW occupied the underlying layers. For these masses, we focused on the upper 200 m of the water column to reveal eddy signatures.

Along-track sections derived from hydrographic observations demonstrated the impact of eddies on the vertical structure of the physical and biogeochemical properties (Fig. 4). A strong halocline was observed between SMW and PSW, with salinities ranging from 30 to 31 psu at depths of approximately 20–40 m. At low prevailing temperatures, the temperature effect of density was small. Salinity was, therefore, the primary factor determining density stratification. At most stations, the SMW ranged from 1.5 to \(-0.7^\circ \text{C}\), with salinities ranging from 26 to 30 psu between the surface and 40 m underwater. The PSW ranged from \(-0.9\) to 0.5 \(\text{C}\), with salinities ranging from 30 to 32.5 psu between 40- and 100-m depth.

The vertical structure of the water column can be used to identify the location of mesoscale eddies in the ocean (McGillicuddy et al., 1999). The vertical profiles of the halocline within eddies provide indirect evidence of upwelling and downwelling. The features observed at both St. 8 and 13 are reminiscent of “mode-water eddies” which displace the seasonal pycnocline upward and the main thermocline downward (McGillicuddy et al., 1999). These mode-water eddies had mesoscale horizontal dimensions (25–50 km). The eddy around St. 8 (E1) was composed of a thick lens of warm water, which elevated the seasonal halocline (i.e., the 30-psi isohaline) and depressed the main halocline (i.e., the 32.5-psi isohaline). The maximum temperature of the eddy was 0.5 \(\text{C}\) at the center. The eddy around St. 13 (E2) was also composed of a thick lens of warm water with doming of the seasonal halocline and downward deflection of the main halocline. The uplift of the seasonal halocline was stronger than that around St. 8. The maximum temperature was approximately 0.1 \(\text{C}\) around the seasonal halocline.

3.2. Vertical distribution of nutrients and chl-a

The upper ocean nutrient distribution reflects the perturbations in the halocline caused by the underlying mode-water eddy features. Ammonium showed a low concentration of \(<1 \mu\text{mol L}^{-1}\) at most stations. Phosphate, nitrate + nitrite and silicate concentrations were relatively depleted in the surface waters, and increased gradually with depth at all stations. However, the vertical distributions were somewhat different between E1 and E2. For E1, the phosphate, nitrate + nitrite and silicate tended to be depressed along with the main halocline, rather than elevated with the seasonal thermocline. In E2, the phosphate, nitrate + nitrite and silicate were clearly elevated to a depth of 50 m by eddy-induced upwelling at the seasonal halocline.

A distinct characteristic of the vertical distribution of chl-a was the pronounced subsurface chlorophyll maximum (SCM) near the base of the euphotic zone. Both the magnitude and vertical depth of the high chl-a were significantly affected by the presence of an eddy with strong upwelling. High chl-a (3.6 \(\mu\text{g L}^{-1}\)) was observed at a depth of 50 m at St. 13, where strong doming of the seasonal thermocline in E2 was observed. The SCM layer, with a chl-a concentration of \(<1 \mu\text{g L}^{-1}\), was observed at the other stations. The depth-integrated chl-a concentration was estimated to be 6.2 \(\mu\text{g m}^{-2}\) at St. 13, which was an order of magnitude greater than the concentrations at the other stations.
3.3. Net samplings

We identified the major mesozooplankton groups around the Northwind Ridge. The mesozooplankton population was dominated by calanoid copepods during the summer period (Table 3). St. 13 had higher proportions of Copepoda (93.6%) and Ostracoda (2.9%) than other mesozooplankton groups, making this station a distinct group. A cluster analysis based on a Bray Curtis similarity analysis using values of proportion (Table 3) showed that for all stations, except St. 13, the composition of copepods was very similar. The similarity index was higher than 97.7%. This distribution occurred because the dominant taxon (the copepods) was present at higher proportions (4869.8%) in all samples. Copepod assemblages are also investigated and described in more detail in a separate contribution to this volume. Three large Arctic calanoid copepods (Calanus hyperboreus, Calanus glacialis, and Metridia longa) dominated at most stations, which is similar to results from the western Arctic Ocean (Longhurst et al., 1984; Conover and Huntley, 1991; Falk-Petersen et al., 1999; Kosobokova and Hirche, 2000; Auel and Hagen, 2002; Ashjian et al., 2003; Campbell et al., 2009). The mean prosome length of Arctic copepods was 7 mm (S.D. = 0.7), which was 60% larger than other mesozooplankton.

3.4. Distribution of Arctic copepods

Vertical patterns of the SSL from the mesozooplankton indicated that there was a relatively uniform distribution over the study area (Fig. 5). The SSL was primarily created by the relatively higher densities of Arctic copepods, and its distribution within the PSW was between 20 and 100 m at all stations. The vertical distributions of the SSL were related to features of the hydrographic structure of the water column such as the existence of the mode-water warm eddy. The SSL was observed mainly at depths from 20 to 40 m in both the E1 and E2, where the seasonal halocline surfaces were domed upward. The SSL was distributed between 30 and 60 m at the other stations. There was no indication of an upward movement towards the SMW.

The s_A, which was attributed to Arctic copepods, also exhibited the distinct spatial variability associated with the existence of the mode-water warm eddy (Fig. 6). The s_A was significantly higher around E2 than at the other stations within the surveyed region and the highest s_A ($17.4 \text{ m}^2 \text{nmi}^{-2}$) was observed at St. 13. The mean s_A at stations in the E2 (St. 10–13) was $15.2 \text{ m}^2 \text{nmi}^{-2}$, which was approximately eightfold higher than the mean densities at the other stations. The WMD of the SSL was distributed at depths from 30 to 55 m and the most of WMD appeared to be deeper than 40 m. However, the WMD clearly increased at depths of 30–35 m around E2. The seasonal halocline showed a similar pattern to s_A and WMD, increasing at shallower depths around E2. Diel migration can influence the vertical distribution of s_A and WMD variability due to diurnal migration because the acoustic data were recorded during all periods of the day and night. However, the mean s_A and WMD at each echogram did not show diel variation between day and night (Table 1 and Fig. 6). The results indicated no significant differences in s_A and WMD between day and night (Mann–Whitney U-test, $p < 0.01$). Given the lack of evidence of diel migration, we could

Fig. 4. Vertical section of potential temperature (a), salinity (b), chl-a (c), dissolved oxygen (d), phosphate (e), nitrate+nitrite (f), silicate (g), and ammonium (h).
pool day and night data to exhibit the spatial variation of Arctic copepods.

The Spearman rank-correlation coefficient (r_s) was calculated for all stations to examine the environmental influences on the spatial distribution of Arctic copepods. We compared the s_A with mean temperatures, salinities, dissolved oxygen, nutrients (averaged from the surface to 100 m), and the integrated chl-a (from the surface to 100 m) at each station. The spatial variation of s_A was significantly correlated ($p < 0.01$) with both salinity and nitrate+\cdotnitrite. A multiple linear regression analysis was conducted and a significant correlation ($p < 0.01$) was found: an increase in the salinity and nitrate+\cdotnitrite coincided with an increased s_A related with Arctic copepods (Table 4).

4. Discussion

Multi-frequency acoustic data were used to identify the SSL of the mesozooplankton layer in the western Arctic Ocean. The SSL was mainly arisen one broad layer from 20 to 100-m depth and 80% of the SSL was concentrated between 20 and 70 m at all stations. Our ability to distinguish between mesozooplankton and other marine organisms such as fish and macrozooplankton in the acoustic data was supported by net sampling. The negative dB window values are likely to be contributed by fish with resonating gas-filled swim bladders and a dB window between 2 and 12 dB is used to identify macrozooplankton (Madureira et al., 1993; Fielding et al., 2012). The net sampling identified Arctic copepods as contributing a significant proportion of the species abundance (> 90%) rather than other mesozooplankton groups (< 1%) (Table 3), and s_A was highly correlated with net-sampled copepod abundance (Fig. 8). Thus, we could conclude that Arctic copepods among the mesozooplankton made the greatest contribution to the SSL and s_A.

Mesoscale eddies play important roles in controlling plankton populations (Landry et al., 1998; Vaillancourt et al., 2003), nutrient fluxes, zooplankton distribution (Ulan et al., 2009), and new production (Jenkin, 1988, McGillicuddy and Robinson, 1997; Law et al., 2001; Ledwell et al., 2008) in marine ecosystems. It would be...
interesting to compare various parameters between warm and cold eddies. Cold eddies are more prevalent than warm eddies (Honjo et al., 2010; Mathis et al. (2007) calculated that a typical cold eddy with a diameter of 20 km and a depth/thickness of 75 m contains 5 × 10^8 mol of excess nitrate to the Canada Basin. Nishino et al. (2011) demonstrated that the warm eddy could transfer 8.5 times more nitrogen nutrients than a typical cold eddy. More than 100 cold eddies are expected to occur annually in the Arctic Ocean (Mathis et al., 2007), whereas large warm eddies are rare. Pacific waters are largely transported via eddies within the Alaskan coastal waters. Here, the occurrence of eddies increases from August to October by 0.2–0.3 S (Watanabe and Hasumi, 2009). However, at most, two large warm eddies are produced each year. Accordingly, the annual transport of excess nitrogenous nutrients by warm eddies is less than 20% of that transported by cold eddies. The present study describes the vertical and spatial distribution of the SSL for Arctic copepods in the mode-water eddy with warm-core. A single transect through an eddy might be difficult to assess the significance of the eddy for the copepods in general. However, the trend in our data suggests that a mode-water eddy with warm-core causing high nutrients and chlorophyll-a might provide a potential mechanism to enhance the copepod density around the Northwind Ridge, thereby affecting food webs in the Canada Basin.

Although the Canada Basin contains numerous subsurface eddies (Manley and Hunkins, 1985; Llinas et al., 2009), little is known about the impact of these eddies on the communities of Arctic mesozooplankton. Eddy-induced changes in the mesozooplankton community structure could have important implications for pelagic food webs, the transfer of particulate organic matter to deeper waters, and carbon sequestration in the ocean (Steinberg et al., 2001; Buesseler et al., 2004; Verdeny et al., 2008). It is important to understand these complex interactions in the Arctic Ocean, because mesoscale features may influence mesozooplankton biomass at spatial and temporal scales: i.e., their vertical and horizontal distribution (Andersen et al., 2011) at long-term and diel cycles. This also holds for their physiology, species succession (Wiebe et al., 1976), and carbon export (Flynn et al., 2012). This study, therefore, might provide novel insight into the mechanisms by which the mesozooplankton food web is affected by warm eddies in the western Arctic Ocean.

Vertical patterns in the SSL indicate a relatively uniform distribution over the study area with the maximum scattering layers at approximately 50 m depth. These patterns show a large portion of the SSL concentrated within the upper 100 m of water in the PSW. All locations were consistent with observations typical of the Arctic summer marine environment (Kosobokova and Hopcroft, 2010). During summer, the levels of nutrients and chlorophyll-a increase relative to the other regions of the water column. Several seasonal studies showed that C. hyperboreus concentrates in the uppermost regions of the water column by early summer before descending to intermediate depths (~400 to 500 m) during late summer (Geynrikh et al., 1983; Ashjian et al., 2003). Unlike similar species, C. hyperboreus uses this migration pattern to avoid reduced salinity in the freshened surface layer. Vertical migration is not a consistent behavioral attribute but rather depends on season (Sameoto, 1984; Landry and Hassett, 1985; Vidal and Smith, 1986) or location (Williams and Conway, 1984). Most nighttime studies on Arctic zooplankton DVM were conducted in open waters (Bucklin et al., 2010; Hopcroft et al., 2010). Researchers have generally concluded that most species exhibit no clear migration pattern (Kosobokova, 1978; Groendahl and Herroth, 1984; Longhurst et al., 1984; Sameoto, 1984; Falkenhausen et al., 1997). Copepods that migrate between day and night in spring stop their migration when seasonal midnight sun conditions develop (Buchanan and Haney, 1980; Falkenhausen et al., 1997). In the Arctic during summer, C. hyperboreus, which is a large copepod (e.g., the mean prosome length alone was described as 7–10 mm according to Wilson, 1932), does not exhibit diel vertical migration (Kosobokova, 1978; Sameoto, 1984; Hansen et al., 1990). In the present study, most stations were covered by sea ice (Table 2) with the exceptions of St. 7–9 where only limited sea ice cover existed. The mesozooplankton was primarily distributed within the PSW and was sparsely distributed in the SMW. Furthermore, the diel vertical migration is unlikely to have affected the copepod density between day and night. These findings suggest that diel vertical migration might not have affected the vertical distribution of Arctic copepods and density distribution around the Northwind Ridge, in the western Arctic Ocean.

Spatially, the highest density of Arctic copepods was found around E2 while the density around E1 was similar to other stations outside of the warm-core eddies. The two warm-core eddies seem to have different environmental conditions. No impact was observed from changes in the nitrate- and chlorophyll-densities with the depth from the aphotic zone to the euphotic zone in E1. However, high chlorophyll-a concentrations and nutrient-rich waters were observed in E2 around the Northwind Ridge (Yang et al., 2015). This difference might be explained by different bathymetric conditions between the two water column structures. Bathymetric variations have a profound effect on the circulation, disruption, and redirection of flow, which enhance the degree of mixing (Richard, 1973; Pitcher et al., 2010). In regions where isobaths change abruptly, water flow is forced off the shelf by a rapid change in the orientation of the bottom bathymetry that produces eddies (Pitcher et al., 2010). The physical consequences of upwelling by abrupt changes in bathymetry are well documented and influence the pelagic ecosystem (Nelson and Hutchings, 1983; Harms and Winant, 1998; Relvas et al., 2007).

Eddy-induced upwelling causes the intermittent upward flux of nutrients into the euphotic zone at magnitudes that are sufficient to balance the nutrient demand, as implied by geochemical estimates of new primary production (McGillicuddy and Robinson, 1997). Martin and Richards (2001) proposed that upwelling produced from perturbations of circular eddies is a possible mechanism for vertical nutrient transport within an eddy. Enhanced phytoplankton biomass is frequently observed at the center of an eddy (Mizobata et al., 2002; McGillicuddy et al., 2007; Ledwell et al., 2008). Upwelling transports

<table>
<thead>
<tr>
<th>Table 2</th>
<th>System parameters calibrated for the acoustic survey.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (kHz)</td>
<td>38</td>
</tr>
<tr>
<td>Transmitted power (W)</td>
<td>2000</td>
</tr>
<tr>
<td>Pulse duration (ms)</td>
<td>1.024</td>
</tr>
<tr>
<td>2-way beam angle (°)</td>
<td>–20.60</td>
</tr>
<tr>
<td>Receiver bandwidth (kHz)</td>
<td>2.43</td>
</tr>
<tr>
<td>Transducer gain (dB)</td>
<td>22.09</td>
</tr>
<tr>
<td>3-dB beam angle (°) (along/athwart)</td>
<td>7.05/6.98</td>
</tr>
<tr>
<td>Absorption coefficient (dB/km)²</td>
<td>9.90</td>
</tr>
<tr>
<td>SA Correlation</td>
<td>–0.40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Relative contribution (%) of the different mesozooplankton groups to the total mesozooplankton abundance at stations around Northwind Ridge, July 2010.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxa</td>
<td>St. no.</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Copepoda</td>
<td>91.7</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>0.8</td>
</tr>
<tr>
<td>Polychaeta</td>
<td>0.9</td>
</tr>
<tr>
<td>Larvacea</td>
<td>1.4</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>1.6</td>
</tr>
<tr>
<td>Pteropoda</td>
<td>1.5</td>
</tr>
<tr>
<td>Ctenophora</td>
<td>1.2</td>
</tr>
<tr>
<td>Euphausiacea</td>
<td>0.9</td>
</tr>
</tbody>
</table>
Table 4
Parameters, error estimates (standard error, SE), and p value for the responses of s_a to mean salinity and nitrate + nitrite. $s_a = x \cdot $ salinity + y \cdot $ nitrate + nitrite ($n=23, r^2=0.63$).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
<th>SE</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>−112.9</td>
<td>37.3</td>
<td><0.01</td>
</tr>
<tr>
<td>x</td>
<td>3.8</td>
<td>1.3</td>
<td><0.01</td>
</tr>
<tr>
<td>y</td>
<td>1.6</td>
<td>0.6</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Fig. 7. Fucoxanthin to chl-a ratio at surface depth (grey bar) and chl-a maximum layer (black bar) depth between St. 6 and 14.

Fig. 8. Relationship between s_a and net sampled density of Arctic Copepods.

nutrient-rich water to the surface, resulting in higher phytoplankton biomass and primary production (Letelier et al., 2000; Garcon et al., 2001; Vaillancout et al., 2003).

Phytoplankton represents a primary food source for copepods. Several copepod species have long been known to feed on diatoms in the ocean (Paffenhofer et al., 2005). Diatoms were predominant in the survey area from St. 5 to 27. We analyzed phytoplankton in the ocean (Paffenhöfer et al., 2005). Diatoms were predominant Several copepod species have long been known to feed on diatoms (Paffenhöfer et al., 2005). The bathymetry is also particularly related to densities. E2 was distributed around the steep continental slope between the Northwind Ridge and the Canada Basin (Table 1). A strong upwelling around E2 caused by bathymetry variations might have caused the high Arctic copepods densities due to the high nutrient and phytoplankton biomass. The large diatom bloom, which provides a rich food source for Arctic copepods, might have developed around the Northwind Ridge due to the supply of higher nutrient levels.

5. Conclusions

We studied the effects of a mode-water eddy with warm-core in the PSW on the mesozooplankton SSL distribution in the pelagic ecosystem around the Northwind Ridge in the western Arctic Ocean during the early summer. The SSL was mainly distributed in the PSW, and contained more than 90% of Arctic copepods at seven stations within mode-water eddies. The s_a of Arctic copepods was an order of magnitude higher around E2 than at the other stations, while no significant relationship was found for E1. E2 induced upwelling due to the shoaling of iso-halocline surfaces, allowing for the injection of nutrients into the euphotic zone, thereby, increasing the phytoplankton biomass, nutrients, and density of Arctic copepods. This suggests that E2 is a good habitat for mesozooplankton in the Arctic Ocean due to high nutrient and phytoplankton biomass. Since eddy causes changes in the community structure of copepod populations, this may also change particulate organic matter and carbon flow generally to the deep sea.

Acknowledgments

The authors acknowledge the support and dedication of the captain and crews of IBRV ARAON for completing the field work with such positive energy. The authors also thank H.J. Lee, and H.D. Jun for the analyses of environmental data. H.C. Shin provided constructive comments and suggestions. We would like to sincerely thank the late K.H. Chung for his unstinting support and encouragement as a Chief Scientist during the first Arctic expedition. This research was a part of the project titled ‘K-PORT (KOPRI, PM14040)’, funded by the Ministry of Oceans and Fisheries (MOF), Korea. H.K. Ha was supported by the Polar Academic Program (PD14010) of KOPRI and Inha University Research Grant (INHA-49278).

References

Madureira, L.S.P., Everson, I., Murphy, E.J., 1993. Interpretation of acoustic data at two frequencies to discriminate between Antarctic krill (Euphausia superba Dana) and other scatterers. J. Plankton Res. 15, 787–802.

