Analysis of trap distribution in polysilicon channel transistors using the variable amplitude charge pumping method

Manh-Cuong Nguyen, Yoon-Seok Jeon, Duc-Tai Tong, Seung-Won You, Jae-Kyeong Jeong, Bio Kim, Jae-young Ahn, Kihyun Hwang, Rino Choi

A R T I C L E I N F O

Article history:
Received 30 May 2014
Received in revised form 7 November 2014
Accepted 21 November 2014
Available online 15 December 2014

Article info:
Article history:
Received 30 May 2014
Received in revised form 7 November 2014
Accepted 21 November 2014
Available online 15 December 2014

The review of this paper was arranged by Prof. A. Zaslavsky

Keywords:
Polysilicon
 Charge pumping
Channel trap density
 Trap distribution
 Grain size effect
 Hot carrier injection

A B S T R A C T

The trap distribution of a polysilicon (poly-Si) channel in a metal–oxide–semiconductor field effect transistor (MOSFET) was extracted successfully using a variable amplitude charge pumping method (VACP) and an energy band bending model. Compared to single crystal Si channels, the poly-Si channels exhibited a high density of bulk channel traps due to the presence of grain boundaries. The densities of the trap states existing in the poly-silicon channel with various grain sizes and channel thicknesses were extracted and compared. The grain size of poly-Si was found to have a stronger impact on the trap distribution than the channel thickness. After hot carrier stress, the trap density in the poly-silicon channel increases and the generated traps are located both at mid gap energy level and near the conduction band energy level.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Through numerous studies, the drivability of devices with a polycrystalline silicon (poly-Si) channel has been improved considerably and poly-Si has been implemented successfully as a channel material in thin-film transistors (TFTs) of the active matrix in the flat panel displays industry [1,2]. Thus far, poly-Si is not attractive as a channel material in logic or memory applications because the grain boundaries in poly-Si inevitably lead to performance degradation and non-uniformity. On the other hand, the significant increase in the bit density in NAND flash memory has attracted increasing attention to the poly-Si channel. As the bit density increases, lateral device scaling in a conventional planar structure becomes increasingly difficult and new device structures, such as a vertical-stacked cell array including Pipe-shaped Bit-Cost Scalable (P-BiCS) [3,4], Vertical NAND (V-NAND) [5] and Terabit Cell Array Transistor (TCAT) [6,7], have been proposed. Because these 3-dimensional structures require poly-Si as a channel material, where the concentration of bulk traps inside the channel cannot be negligible, it is essential to evaluate the trap states in the grain boundaries precisely and improve the quality of the poly-Si channel by adopting the appropriate passivation techniques. To date, several extraction methods have been used to estimate the channel trap density [8], interface trap density [8,9], and grain boundary trap density [10,11] of poly-Si MOSFETs. The extraction techniques [8,9] were improved using more than one device characteristic (C–V and I–V). On the other hand, these models were not precise enough to determine the trap distribution because thermionic transport assumptions in channel carrier transport (I–V) between the source and drain junctions were used as the main input data [10,11] or boundary condition [8,9]. The charge pumping (CP) method [12–15] is used widely to determine the interface trap density in metal–oxide–semiconductor field effect transistors (MOSFETs) with a single crystal (SC) silicon channel because of its good detection limit and convenience [12]. It can also enable to estimate the trap generation induced by hot carriers with negligible detrapping [15]. However, few studies have used the charge pumping method to obtain the mean trap density within a channel of poly-Si MOSFETs [14,15]. The dependence of the trap density on the channel thickness could refer to an inaccurate evaluation of the quality of the channel material. In this study, the trap distributions in poly-Si MOSFETs with different thicknesses and grain sizes were obtained successfully using variable-amplitude charge-pumping
(VACP) or amplitude-sweep charge-pumping (ACP) and an energy band bending model. The trap generation in the poly-Si channel under hot carrier stress (HCS) condition was also examined to confirm the validity of the extraction technique.

2. Experiment

Fig. 1 shows the top view and cross section view of the poly-Si TFT structure. Firstly, a 500 Å amorphous silicon (a-Si) layer was deposited on a 1000 Å SiO2 layer by low pressure chemical vapor deposition (LPCVD and patterned to reduce the contact resistance of the channel. Undoped amorphous-Si (a-Si) deposited by LPCVD was followed by solid phase crystallization (SPC). After using an active mask, 8 nm SiO2 was deposited as a gate oxide. Another a-Si layer was deposited and patterned to be the gate. Phosphorous ions were implanted with the energy of 50 keV and dose of 10^{15} cm$^{-2}$ to form source/drain contacts for MOSFET. The grain size was controlled by changing initial a-Si thickness (260 nm, 200 nm and 150 nm). Since the grains were formed by SPC, the grain sizes are proportional to the thicknesses of initial poly-Si films as reported [16]. The average grain sizes that were measured by electron backscattered diffraction (EBSD) are 550 nm (large grain), 470 nm (medium grain) and 400 nm (small grain), respectively. On the other hand, the channel thickness was controlled by etching so that the grain size was independent of the final poly-Si thickness [17]. In this study, we have used four types of poly-Si channel, large grain (23 nm and 18 nm in thickness), medium grain (18 nm in thickness) and small grain (9 nm in thickness). Single crystalline (SC) silicon MOSFETs with the same dielectric were also prepared.

Amplitude-sweep charge-pumping (ACP) [14] was carried out for both the poly-Si MOSFETs and SC silicon MOSFETs, W/L = 1 μm/1 μm. The charge pumping current from body contact was converted to the trap density per area (N_{CP}). The base voltage, V_{base}, of the pulses applied to the gate was kept at −2 V. The N_{CP} values were obtained by varying the high voltage of the pulses, V_{high}. The pulses were applied on the gate with frequency $f = 10$ kHz, 1 μs in the rise time and fall time. This condition was selected to reduce the overestimation of charge pumping current, I_{CP} [17].

3. Theory

In the bulk MOSFETs, the bending of energy band is localized only near the oxide – channel interface. However, the energy band of ultra-thin channel must change during the gate voltage sweep due to the accumulation or fully depletion of carriers in the channel. Fig. 2a–c show the energy band structure of the poly-Si channel during the ACP measurements. At $V_{High} = V_{FB}$, which is the flat band voltage, Fermi level (E_F) lies on top of the intrinsic Fermi level (E_i) because the channel is non-intentionally-doped. When gate voltage (V_G) is smaller than V_{FB} at $V_G = V_{base}$, the energy bands in poly-Si were bent upward (E_F and E_i) due to the hole accumulation, which means the E_F level is above E_i (see Fig. 2a). The trap states contributing to the charge pumping current are the states that are initially empty at $V_G = V_{base}$ but filled at $V_G = V_{High}$. The shaded areas in Fig. 2a and b represent the energy states whose energy levels are higher than E_F, while the shaded area in Fig. 2b represents the energy states whose energy levels are lower than E_F. When V_G increases from V_{base} to V_{High} (in case of $V_{High} < V_{FB}$), the energy band in poly-Si moves downward but the E_F level is still above E_i (see Fig. 2b). In this case, N_{CP} comes from the trap states located in the region scanned by E_i that is indicated by the shaded area in Fig. 2b. If V_{High} becomes bigger than V_{FB}, N_{CP} includes not only the traps below E_i, but also the traps above E_i (represented by the shaded area in Fig. 2c). These electron trap states, strongly affecting the n-type poly-Si MOSFETs' performance, would be only filled when $V_G > V_{FB}$ – the trap energy states are below E_i. As a result, the density of the occupied electron traps above E_i and below E_F (N_{ET}) at $V_G = V_{High}$ can be evaluated by $N_{ET} = N_{CP} - N_{CP}(FB)$, where $N_{CP}(FB)$ is the trap density extracted from the CP method when $V_{High} = V_{FB}$.

Fig. 2d illustrates the energy band distribution in poly-Si MOSFET with dielectric and gate metal together when $V_G = V_{High} > V_{FB}$. ϕ_0 and ϕ_a are potential difference between E_i and E_F at the back interface and at the front interface, respectively. ϕ_a was calculated using quasi-static capacitance–voltage (QS-CV) measurements:

$$\phi_a = \int_{V_{CP}}^{V_{FB}} \left(1 - \frac{1}{C_{ox}} \right) dV_C$$ \hspace{1cm} (1)

where C, C_{ox}, and V_{High} (V_C) are the measured capacitance at $V_c = V_{High}$, the maximum capacitance, and gate voltage, respectively. QS-CV allows the response of trap states on a gate sweep, which is a good reference to monitor the effects of trapping in the poly-Si channel.

The electron trap distribution, D_{ET} (cm$^{-3}$ eV$^{-1}$), in the poly-Si channel was introduced. This D_{ET} stands for the electron trap concentration at a particular energy region in the poly-Si channel. In the other words, D_{ET} is a function of the energy bending (ϕ) in the energy band structure and is assumed to be uniform along the poly-Si thickness. Since D_{ET} represents the value normalized by thickness, it can be an indication of channel quality. The electron traps located below the Fermi level are occupied and contribute to the total charge concentration, ρ, in the channel. The concentration of occupied electron traps above E_i at a certain point, x – distance to the back interface, in the channel, $N_e(x)$, was extracted using the following integration:

$$N_e(x) = \int_0^x D_{ET}(\phi) d\phi$$ \hspace{1cm} (2)

The integration of $N_e(x)$ along the poly-Si thickness, N_{ET}, presents the density of occupied electron trap states:
\[N_{ET}(VG) = \int_0^{t_{Si}} N(x)dx \]

This value should be equal to the experimental \(N_{ET}(VG) \) extracted from the ACP:

\[N'_{ET}(VG) = N_{ET}(VG) \]

(3)

The poly-Si channel was divided into many infinitesimally thin layers (thickness of each layer is \(\Delta x \)) to derive the solution of the Poisson equation, \(\phi_k \):

\[\phi_k = \phi_{k-1} + \left[\frac{\rho_{k-1}}{\epsilon_{Si}} (k-1)\Delta x + \frac{\partial \phi}{\partial x} \right]_{k-1} \Delta x \]

\[- \frac{\rho_{k-1}(\Delta x)^2}{2\epsilon_{Si}} \left[k^2 - (k-1)^2 \right] \]

(5)

where \(k \) is the number of a specific layer. The value of \(\phi_0 \) can be determined when the simulated value of \(\phi_0, \phi_S(k=t_{Si}/\Delta x) \), is equal to \(\phi_S \):

\[\phi_S = \phi_S \]

(6)

In the measurements, the electric field at the back interface was assumed to be zero to avoid the voltage drop at the back interface:

\[\frac{\partial \phi}{\partial x} \mid_{x=0} = 0 \]

(7)

Using (4), (6) and (7) as the boundary conditions, \(D_{ET}(\phi) \), the profiles of band bending \(\phi(x) \), carrier concentrations \(n(x) \) and \(p(x) \), trap concentration \(N_t(x) \) and charge concentration \(\rho(x) \) were extracted according to the algorithm shown in Fig. 3.

We assumed that \(D_{ET}(\phi) \) is continuous and is constant in an infinitesimal range of energy levels so that the mathematical calculation of Eq. (2) becomes possible. \(D_{ET}(0) \), \(D_{ET} \) at the mid gap energy level (\(\phi = 0 \)), can be simply obtained when \(V_G \) is very close to \(V_{FB} \) because only \(D_{ET}(0) \) contributes to \(N_{ET} \) change along the channel. As changing \(V_G \), \(D_{ET}(\phi) \) of near energy levels can be calculated by increasing the values from 0 to those until all the boundary conditions (Eqs. (4), (6) and (7)) were satisfied. The obtained \(D_{ET} \) values were used in the integration (2) to calculate \(D_{ET}(\phi) \) at near energy level.
level. The D_{ET} profile corresponding to the energy levels has been extracted gradually from the mid gap (near V_{FB}) to the conduction band edge (near V_G).

4. Results and discussion

The CP trap densities, N_{CP}, and trap distribution, D_{ET}, in the energy band structure were obtained in Fig. 4. The inset of Fig. 4 shows the trap densities, N_{CP}, of various channel devices extracted using the VACP method. As expected, the trap densities of poly-Si MOSFETs were significantly higher than those of the SC MOSFETs, suggesting that the traps in the grain boundaries make a significant contribution to N_{CP} compared to those at the front and back interfaces (which dominate the trap density in SC MOSFETs). Since N_{CP} is a collective value that includes total traps in the channel, it increases as the thickness of the channel is thicker. The trap distributions D_{ET}, which are independent of channel thickness, in various types of poly-Si channels were extracted and summarized in Fig. 4. The trap distribution is flat in the mid gap energy level and tends to increase rapidly when energy level approaches E_C. The similar D_{ET} profiles of the samples of a same grain size with different channel thicknesses (23 nm and 18 nm, large grains) confirms that the D_{ET} of poly-Si channel can be attributed mainly to the grain boundaries. As the grain size becomes smaller, the density of grain boundaries increases, which leads to the higher D_{ET}. It can be observed in the 18 nm thickness poly-Si MOSFETs with different grain sizes. The thinnest channel (9 nm) MOSFETs with smallest grains showed the highest trap distribution D_{ET} and it is worth noting that a significant increase occurs at the mid gap energy level.

In order to demonstrate the validity of this measurement, we generated traps using 1000s HCS under the condition, $V_C = V_D/2$, where the most degradation had occurred at $V_D = 7V$. VACP and QS-CV measurements were performed on the sample with 18 nm thickness poly-Si and large grains. It needs to be mentioned that, different from HCS on SC MOSFETs, high population of hot carriers cannot be generated due to the existence of crystalline imperfections in poly-Si channel and damage may not be localized at the interface of drain edge. Although the trap generation, D_{ET} (after HCS) – D_{ET} (before HCS), in the mid gap is significant, the tail trap generation is very considerable after HCS (note that D_{ET} is plotted in the logarithm scale in Fig. 5). The tail trap generation mainly caused the large degradation of the I_D-V_G characteristic (the inset of Fig. 5). The tail trap generation was suggested to be the main factor of degradation under HCS [18], which agrees with our results.

5. Conclusion

The trap distribution in poly-Si MOSFETs was determined by considering the trap concentration in the channel in conjunction with VACP measurement to the energy band bending model. The validity of this technique was confirmed using MOSFETs with various channel thicknesses and grain sizes. Under HCS condition, the degradation of poly-Si channel was detected using this technique. The change of trap distribution in poly-Si channel during HCS was quantified. This technique enables a precise evaluation of the quality of the poly-Si channels and passivation treatment effects.

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2012R1A2A20058584). This work was also supported by an Inha University Research Grant.

References