저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

- 귀하는 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건을 명확하게 나타내어야 합니다.
- 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer
순환운동이 초등학생의 신체질량지수(BMI)와 체력에 미치는 영향

Effects of Circuit on BMI and Physical Fitness of Elementary School Students

2009년 2월

인하대학교 교육대학원
생활체육교육전공
한 세 희
순환운동이 초등학생의 신체질량지수(BMI)와 체력에 미치는 영향

Effects of Circuit on BMI and Physical Fitness of Elementary School Students

지도교수 박 동 호

이 논문을 석사학위 청구논문으로 제출함.
본 논문을 한세희의 석사학위 논문으로 인준함.

2009년 2월

주심____________________인

부심____________________인

부심____________________인
목차

I. 서론

<table>
<thead>
<tr>
<th>항목</th>
<th>페이지</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 연구의 필요성</td>
<td>1</td>
</tr>
<tr>
<td>2. 연구의 목적</td>
<td>3</td>
</tr>
<tr>
<td>3. 연구 가설</td>
<td>4</td>
</tr>
<tr>
<td>4. 용어의 정의</td>
<td>4</td>
</tr>
<tr>
<td>5. 연구의 제한점</td>
<td>5</td>
</tr>
</tbody>
</table>

II. 이론적 배경

<table>
<thead>
<tr>
<th>항목</th>
<th>페이지</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 순환운동(Circuit Training)</td>
<td>6</td>
</tr>
<tr>
<td>2. 신체질량지수(BMI)</td>
<td>10</td>
</tr>
<tr>
<td>3. 아동기의 체력</td>
<td>11</td>
</tr>
<tr>
<td>4. 선행연구 분석</td>
<td>17</td>
</tr>
</tbody>
</table>

III. 연구방법

<table>
<thead>
<tr>
<th>항목</th>
<th>페이지</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 연구 대상</td>
<td>23</td>
</tr>
<tr>
<td>2. 연구 대상자 신체 특성 비교</td>
<td>23</td>
</tr>
<tr>
<td>3. 연구방법 및 절차</td>
<td>24</td>
</tr>
<tr>
<td>4. 측정 항목</td>
<td>27</td>
</tr>
<tr>
<td>5. 측정방법 및 측정도구</td>
<td>27</td>
</tr>
<tr>
<td>6. 운동프로그램</td>
<td>30</td>
</tr>
</tbody>
</table>
7. 자료처리 ... 31

IV. 연구 결과 .. 33
 1. 순환운동이 신체질량지수에 미치는 영향 33
 2. 순환운동이 기초체력에 미치는 영향 36

V. 논의 ... 44

VI. 결론 및 제언 .. 46
 1. 결론 ... 46
 2. 제언 ... 47

참고 문헌 .. 48
ABSTRACT .. 51
표 목차

<표 1> 아시아 성인 기준 범위 ... 10
<표 2> 집단의 신체적 특성 ... 23
<표 3> 연구 대상자 신체 특성 비교 ... 23
<표 4> 종목별 사전 검사 비교 .. 24
<표 5> 순환운동 구성요소 ... 31
<표 6> 실험 전·후의 집단 및 시기별 신체질량지수의 변화 33
<표 7> 실험 전·후의 집단 및 시기별 신장의 변화 35
<표 8> 실험 전·후의 집단 및 시기별 체중의 변화 36
<표 9> 실험 전·후의 집단 및 시기별 윗몸 일으키기의 변화 37
<표 10> 실험 전·후의 집단 및 시기별 제자리멀리뛰기의 변화 38
<표 11> 실험 전·후의 집단 및 시기별 600m달리기의 변화 39
<표 12> 실험 전·후의 집단 및 시기별 50m달리기의 변화 41
<표 13> 실험 전·후의 집단 및 시기별 앉아앞으로굽히기의 변화 42
그림 목차

<그림 1> 집단 간 시기별 신체질량지수의 변화 ... 34
<그림 2> 집단 간 시기별 신장의 변화 ... 35
<그림 3> 집단 간 시기별 체중의 변화 ... 36
<그림 4> 집단 간 시기별 근지구력의 변화 ... 37
<그림 5> 집단 간 시기별 순발력의 변화 ... 38
<그림 6> 집단 간 시기별 전신지구력의 변화 ... 40
<그림 7> 집단 간 시기별 스피드의 변화 ... 41
<그림 8> 집단 간 시기별 유연성의 변화 ... 42
Ⅰ. 서론

1. 연구의 필요성

체력은 모든 신체활동의 바탕이 되고 일상생활의 근간을 이루는 요인으로써 운동선수뿐만 아니라 일반인들의 생존하고 활동하는데 기초가 되는 종합적인 신체능력이다. 그러나 과학기술의 발달과 사회 문화 및 생활방식의 변화에 따른 신체활동의 부족과 불균형적인 식생활습관 등으로 인해 초·중 학생들의 기초 체력은 약해지고 비만의 발생 비도는 점차 증가하고 있는 설정이다. 교육부가 공개한 초·중·고등학생 2006년 신체발달 상황 및 건강 검진 결과에 따르면 비만율은 초등생 11.2%, 중학생 11.2%, 고교생 12.8% 등으로 평균 11.6%를 기록하여 10명중 1명 이상이 비만으로 나타났다(문화일보, 2007). 이렇듯 경제 · 사회 · 문화적인 변화에 따른 아동비만 이환율의 증가가 가속화 되고 있는 만큼 그에 따른 예방책과 대안을 제시하는 것이 시급하다. 더욱이 비만아는 성인이 되어서도 비만증이 될 확률이 높고, 성인의 비만증에서 보이는 임상적 증상인 우울증, 당뇨병, 지방간, 고혈압, 고지혈증과 같은 성인병이 많이 나타나는 것으로 알려져 있다. 여러 보고에 의하면 과체중이었던 경우 비만아였던 경우 그들의 약 80%가 성인 비만증이 되며, 성인 비만증 환자들을 소급해 보면 성인 비만증의 30%는 아동기 때 체중이 많이 나갔다는 병역이 있다고 한다(보건복지부, 2001).

이러한 원인은 성장발달과정에서 좋은 식습성과 생활습성을 가져야 할 어린이가 그렇지 못한 환경에 처해 있다는 것을 말해주고 있다.
따라서 아동들에게 비만을 예방하고 좋은 생활습관을 기르기 위해 여러 가지 체육활동을 경험하고 신체활동에 대한 홍미를 유발시켜서 신체의 발달을 촉진시켜야 한다. 특히 어린이들은 컴퓨터게임에 빠져서 학교에 갈 때 오면 컴퓨터 앞에 매달려 몇 시간씩 앉아있는 실정이다. 이러한 결과로 어린이들의 체력은 과거에 비해 커다랗지만 기초체력은 반대로 저하된 사실들을 쉽게 발견할 수 있다(문화관광부, 2004). 이렇게 신체활동의 저하로 인해 비만 학생들이 증가하였고 비만 학생들의 증가는 기초체력의 저하로 이어진다는 것이다.

성장기의 아동에게 있어서 신체활동은 성인보다 더욱 중요한 의미를 가진다. 신체활동은 성장과정 중에 있는 아동의 신체적, 지적, 정서적 발달에 큰 영향을 미치기 때문이다. 아동들은 신체적 동작을 통하여 무한한 삶의 경이를 깨닫고, 표현하게 되며 언어보다는 신체 동작을 매개로 하여 의사 전달 및 정보 교환을 이므로써 자아의 성장과 그들 나름대로의 세계관을 터득해 간다(박노혁, 2003).

또한, 운동 경험을 통해서 아동들은 사회생활에서 요구되는 능력과 태도를 기를 수 있다. 즉, 아동이 신체활동에 적극적으로 참여함으로써 능동적이고 건전한 생활 태도, 독특한 묘, 창의적 정신력, 사회 적응력, 인지능력 등을 기를 수 있다. 따라서 아동을 바르고 튼튼하게 키우려 한다면 아동에게 운동을 습관화하고 운동의 가치를 충분히 느낄 수 있도록 신체활동의 경험을 갖도록 해주어야 한다. 아동이 신체 활동에 참여하여 신체적, 정신적, 사회적, 정서적으로 바람직한 발달을 유도함으로써 올바른 사회 구성원으로 키워야 할 것이다. 그러나 초등학생들 사이에 확산되는 납치 살해 공포로 인하여 아동들은 집안 생활이 늘어나고, 방과 후 영어나 수학 등을 공부하기 위해 학원을 전전하며 공부하느냐 운동을 전혀 못하고 있다.
이를 해결하기 위해서는 학생들이 가장 많은 시간을 보내는 학교생활에서의 체력관리가 필요하며, 학교 체육 수업을 통해 학생들에게 시간적, 공간적, 경제적 제약을 최소화하면서 흥미 있는 다양한 운동 프로그램을 적용하여 체력향상을 허용할 수 있어야 한다.

2. 연구의 목적

본 연구는 생활 방식의 변화에 따른 신체활동의 부족으로 인하여 날로 심각해지는 초등학생들의 체력 저하와 비만의 발생이 점차 증가하고 있다. 초등학생들에게 적당한 신체활동에 참여함으로써 신체기 관의 성장을 촉진할 수 있는 초등학교 3학년 학생들에게 순환운동을 실시하였을 때 신체질량지수(BMI)와 기초체력(근력구력, 순발력, 스피드, 유연성, 전신지구력)에 어떠한 영향을 미치는지를 살펴보고자 한다. 또한 이 프로그램이 초등학교 학생들의 기초체력 향상에 효과적인가를 비교 분석하여 학교체육 현장에서 체력 및 운동 능력을 강화하고 이를 향상시키는데 그 목적이 된다.
3. 연구 가설

본 연구의 목적을 달성하기 위하여 연구와 관련된 구체적인 연구 가설을 열거하면 다음과 같다.

1) 순환운동이 초등학생의 신체질량지수(BMI)에 영향을 미칠 것이다.
2) 순환운동이 초등학생의 기초체력에 영향을 미칠 것이다.
 (1) 순환운동이 근지구력에 영향을 미칠 것이다.
 (2) 순환운동이 순발력에 영향을 미칠 것이다.
 (3) 순환운동이 스피드에 영향을 미칠 것이다.
 (4) 순환운동이 유연성에 영향을 미칠 것이다.
 (5) 순환운동이 전신자구력에 영향을 미칠 것이다.

4. 용어의 정의

1) 순환운동
순환운동은 한 종목씩 배회하며 하는 운동으로서, 본 연구에서는 “15분 순환운동”의 5가지의 유산소성운동과 5가지의 근력 운동 프로그램을 초등학생의 체력에 맞추어 프로그램을 재구성하여 각 운동종목별로 24초간씩 운동하여 10종목을 실시하면 4분이 된다. 이를 3회 반복 실시하여 총12분 실시하였다.
2) 신체질량지수(BMI)
신체질량지수(BMI : body mass index)는 측정한 체중과 신장을 이용하여 다음과 같은 공식으로 계산한다.

\[\text{신체질량지수} = \frac{\text{체중}(\text{㎏})}{\text{신장}(\text{m})^2} \]

3) 기초체력
기초체력은 학생 활동을 위한 기초가 되는 신체적 능력을 말하는 것으로 일반적으로 저항력(방위체력)과 행동력(행동체력)으로 나누며, 행동력은 근력, 순발력, 지구력, 유연성, 민첩성, 균형성의 여섯 가지 운동능력으로 나눈다(예종이, 2000).

5. 연구의 제한점

본 연구는 다음과 같은 제한점을 갖는다.

1) 본 연구는 인천광역시 중구 K초등학교 3학년을 대상으로 하기 때문에 결과 해석에 있어 지역적인 한계와 차이가 있을 수 있다.
2) 본 연구의 기초체력 검사 항목을 50m 달리기, 제자리 válido 점거기, 움직임 율기기, 앞으로 움직임 율기기, 오래달리기-걸기(600m)로 한정하였으므로 결과 해석에는 한계가 있을 수 있다.
3) 트레이닝 기간 중 기초체력 향상에 영향을 미칠 수 있는 개인별 체육 활동과 과외 체육활동을 엄격하게 통제하지 못할 수 있다.
4) 사전과 사후 기초체력 측정 시 기온의 변화로 측정의 오차가 있을 수 있다.
Ⅱ. 이론적 배경

1. 순환운동(Circuit Training)

1) 순환운동(Circuit Training)의 개념

서킷트 트레이닝(Circuit training) 트레이닝은 근력 증강만을 목적으로 하는 미국식 보디빌딩(Body Building)과는 달리, 근력 증강뿐만 아니라 심장과 폐, 순환계도 더불어 향상시키는 것을 목적으로 하는 즉, 일반 종합적인 신체 컨디션의 향상을 위한 훈련으로서, 1952년 영국 남부 리드대학 체육교수였던 Morgon과 Adamson에 의해 처음으로 연구되어졌다. 영어인 서킷트(Circuit)는 원래 라틴어에서 유래된 것으로 “원 주위를 돌다”라는 뜻이다. 서킷트라는 말은 전기 등에서 잘 사용하고 있는 회로라는 의미인데 서킷트 트레이닝(Circuit Training)을 직역한다면 회로훈련법이라고 할 수 있다. 이 트레이닝은 그 이름과 같이 수 종목의 트레이닝을 구성하여 하나의 세트로 하고 한 세트의 운동을 마치면 다시 최초부터 되돌아가서 두 번째 세트를 시작하는 방법으로 트레이닝 하는 것인데 이와 같이 순환하기 때문에 우리나라는에서는 순환운동(循環運動)이라고 한다.

윤신중(1985)은 서킷트 트레이닝은 방법상으로는 웨이트 트레이닝의 방법과 매우 비슷하나 웨이트 트레이닝의 방법에다 시간이라는 요소를 가진 호흡 및 순환의 지구성 트레이닝을 부과한 것이라고 할 수 있다. 두 번째 차이점은 운동 부하가 웨이트 트레이닝보다 가볍다는 점이다. 웨이트 트레이닝에서는 최대 힘의 2/3 이상의 부하를 원칙으로 하여 트레이닝의 부하를 선정하는데 비해 서킷트 트레이닝에서는 30초라든가 1분간 등의 일
정 시간에 어떤 종목을 몇 회 할 수 있는가를 측정해서 처방을 결정한다.

2) 순환운동의 특징

종목 사이에 휴식시간이 없이 시작해서 끝까지 계속하기 때문에 무하가 부가되며 근력과 지구력을 키울 수 있다. 초등학교 체육교육과정을 수행하는데 필요한 전반적인 기초체력을 키우는데 적합하다고 볼 수 있다.

첫째, 특징은 하나의 종목과 다음의 종목 간에 휴식을 취하지 않는 방법인 것이다. 휴식의 형식에 의해 트레이닝을 분류하면 세 가지 형으로 분류한다. (가) 완전휴식(Repetition Training) (나) 불완전 휴식(Interval Training) (다) 무휴식(지속 Training) 등인데 서킷트 트레이닝은 무휴식 트레이닝에 속한다. 즉 종목과 종목 간에 휴식을 취하지 않고 트레이닝을 시작했다가 끝마칠 때까지 지속하여 무하를 가하는 방법인 것이다. 그러므로 근력이 양성되는 시간에 지구력이 양성된다.

둘째, 특징은 무하를 웨이트 트레이닝보다 가볍게 한다는 것이다. 웨이트 트레이닝은 휴식을 취하지만 서킷트 트레이닝은 휴식을 취하지 않기 때문에 30초간 또는 1분간이라든가 일정한 시간에 어느 종목을 몇 회 할 수 있는가를 측정하여 그 처방을 정하는 것이다. 가령 어떤 운동을 1분간에 실시한 운동 횟수의 1/2로서 트레이닝 한다.

셋째, 특징은 트레이닝 효과의 판정을 시간으로 정한다는 것이다. 최초의 트레이닝 개시부터 종료까지 시간을 측정해 두면 트레이닝에 의해 체력이 향상되면 소요시간이 단축되기 때문에 트레이닝 효과는 누구든지 명확히 파악된다. 시간으로서 효과를 판정한다는 것은 되도록 스피드가 있는 동작으로 운동을 실시하여 스피드로서 효과를 판정하는 것과 다름이 없다 (김진원, 1984).
3) 순환운동의 처방조건

독일의 정신의학자 아론트와 약리학자 슈르츠 등이 말한 “증정도 자극”을 위해 과부하의 원리를 적용한 처방조건을 제시하고 있다(교육부, 1993).

(1) 운동의 강도(질적 조건) : 자극의 빈도
(2) 운동의 시간(양적 조건) : 부하하는 훈련의 강도는 적정 강도와 시간에 달려있다.
(3) 운동의 빈도(양적 조건) : 일정 시간에 실시 횟수
 (가) 매일 실시 : 가장 효과적
 (나) 주 2~3회 실시 : 효과 유지
 (다) 2주 간격 : 효과 없음

이상의 조건을 고려하여 성별, 체력, 연령에 맞게 처방하여 실시한다.

4) 순환운동코스

운동은 크게 전신적 코스와 국부적 코스의 두 가지로 나눈다.

(1) 전신적 운동 코스 : 전신을 7~8부분으로 나누어 각 부분을 강화하는 운동 종목을 1~3개씩 택하여 전체가 10종류 전후의 종목으로 트레이닝 코스를 만든다.
(2) 국부적 운동 코스 : 자기가 희망하는 두 종류의 운동종목을 강화하며 운동종목은 1개에서 5개 종류 정도를 선택한다.

5) 순환운동(Circuit training)의 실시

서킷트와 순환 또는 순회라는 뜻으로 여러 종목의 트레이닝을 꾸며서 하나의 세트로 하고 한 세트의 운동을 배열에 따라 짧은 시간에 강도 높은 트레이닝을 실시할 수 있다. 창시자들은 그 목표에 대해 순환운동(Circuit training)의 실시를 목표로 하였다고 한다.
training)은 근력과 호흡 순환기능의 점진적 발달을 목적으로 이름을 붙였다고(김정묵, 1982).

(1) 실시방법
트레이닝의 대상과 목적에 따라 8~10종목을 순환한다. 종목별 트레이닝의 부하는 최대근력의 1/2을 30~35초 동안 실시할 수 있는 최대횟수를 기준치로 정하며 종목 간 이동시에는 1분~1분30초 동안 불완전휴식(걷거나 조깅)을 취하여 3세트를 반복 실시한다.

(2) 순환운동(Circuit training)의 효과
운동종목의 선택과 배열 그리고 그것에 따른 운동 강도가 결정되면 다음은 트레이닝에 필요한 소요시간의 단축을 트레이닝 효과로 간주하고 있다. 소요 시간이 단축되었다는 것은 그만큼 체력이 향상되었다는 것을 의미한다. 소요시간의 테스트는 매 3개월에 1회가 적당하며 트레이닝효과가 인정되면 다시 각 종목의 최대 반복횟수를 특정하고 부하를 검증하여 가는 것이 필요하다(신용호, 1993).

(3) 유의사항
(가) 종목별 실시방법과 순서의 일관성이 있어야 한다.
(나) 실시가 각 개인의 능력에 맞게 트레이닝의 내용과 강도를 개별화한다.
(다) 실시자의 맥박이 120회/분 이하로 떨어지지 않도록 트레이닝의 강도를 조정한다.
(라) 트레이닝실시 전과 후의 맥박/분이 50회 이상 트레이닝을 해야만 효과가 있다.
(마) 소요시간의 단축만을 위하여 각 종목에서의 동작을 부정확하게 행해서는 본래의 효과가 나오지 않는다. 따라서 트레이닝전에 제시한 정확한 동작으로 각 종목을 실시하는 조건에서 테스트하지 않으면 안 된다. 그
러므로 실시자와 검사자 간의 신뢰를 바탕으로 테스트를 행할 필요가 있다(성동진, 1998).

2. 신체질량지수(Body Mass Index : BMI)

신체질량지수(BMI)는 키의 변화에 따라 체중을 평가하여 비만의 정도를 추정하기 위하여 쓰이는 방법이다. 그리고 신체의 체중을 신장의 제곱으로 나눈 값으로 추정하게 되며, 심혈관질환과 신체질량지수(BMI) 간에는 통계적으로 유의한 상관이 있음을 밝히고 있다.

대한 비만 학회에서 ‘비만의 진단과 치료, 아시아 태평양 지역 지침’에서 제시된 아시아 성인 기준 범위는 <표 1>과 같다.

<표 1> 아시아 성인 기준 범위

<table>
<thead>
<tr>
<th>분류</th>
<th>BMI(kg/m²)</th>
<th>동반질환의 위험도</th>
</tr>
</thead>
<tbody>
<tr>
<td>저체중</td>
<td>< 18.5</td>
<td>낮다</td>
</tr>
<tr>
<td>정상범위</td>
<td>18.5 ~ 22.9</td>
<td>보통</td>
</tr>
<tr>
<td>과체중</td>
<td>> 23</td>
<td></td>
</tr>
<tr>
<td>위험체중</td>
<td>23 ~ 24.9</td>
<td>증가</td>
</tr>
<tr>
<td>1단계 비만</td>
<td>25 ~ 29.9</td>
<td>중등도</td>
</tr>
<tr>
<td>2단계 비만</td>
<td>> 30</td>
<td>고도</td>
</tr>
</tbody>
</table>

(대한비만학회, 2000)

다음은 신체질량지수(BMI)와 건강위험에 관한 미국 국립보건원(National Institute of Health : NH)에서 제안한 일반적 지침은 다음과 같다.

18.5 미만 : 영양실조 혹은 심각한 질병
18.5~25: 건강위험이 거의 없는 건강한 체중
25~30: 과체중, 건강문제의 위험성 증가, 특히 체중과 관련된 의학적 문제가 하나 혹은 두 가지 있는 경우
30 이상: 비만, 건강한 체중을 20% 이상 초과한 경우로 건강에 위험이 가장 크다.

3. 아동기의 체력

1) 체력의 개념
아동의 체력은 아동이 삶을 영위하는데 필요한 신체적 능력이라 할 수 있다. 이와 같은 진술을 인간이 지적 활동의 기반이 되는 정신적 능력을 지능 또는 지리라고 하는 데에 대한 조작적인 견지에서의 구별이다. 그러나 아동의 체력이란 말은, 단지 아동이 신체검사에 합격한다든지, 병에 걸리지 않는 것만을 의미하지 않는다. 여기에는 아동의 생리학적인 면은 물론 지적, 정서적, 사회적인 측면의 적성이 포함되어 있다.

이러한 의미에서 아동의 체력은 아동이 피로를 느끼지 않고 매일 매일의 삶을 적극적으로 살아가고 비상시에 처했을 때 효과적으로 대처할 수 있는 신체적 능력으로 정의되기도 한다. 또한 아동이 병이 없고, 치아가 좋고, 청력, 시력이 정상이며, 정상적인 정신 상태를 유지하고 동시에 신체적 조정을 할 수 있는 능력이 있으며, 오랫동안 작업을 계속하더라도 능력이 저하되지 않음을 뜻하기도 한다.

이상을 종합해 보면, 아동의 체력이라는 것은 빨리 뛴다든지, 무거운 물건을 들 수 있는 것과 같은 물리적인 힘뿐만 아니라, 체내에 어떤 해로운...
물질이 들어와 화학적인 변화를 일으켰을 때 여기에 대항하는 화학적인 힘 등의 요소가 합해진거라 할 수 있다(김진원, 1984).

2) 아동의 주요 체력요소

앞에서 살펴본 바와 같이 체력의 개념을 명확하게 규정하기란 쉬운 일 이 아니다. 그러나 최근에 와서 그 개념이 크게 두 가지로 범주화되었는데, 이는 건강에 관련된 체력과 운동기능에 관련된 체력으로 분류하는 것이다.

(1) 건강 체력

비만 그리고 여러 가지 골격과 근육의 이상과 같은 퇴행성질환으로부터 아동을 보호할 수 있는 신체의 생리적, 심리적 기능을 의미한다.

(2) 운동기능 체력

아동의 운동기능과 관련된 체력요소이며, 이 요소는 장차 아동의 스포츠 및 기타 운동기술의 발현에 영향을 미친다. 주요 체력요인을 알아보면 다음과 같다(체육청소년부, 1992).

(가) 근력 및 근지구력

근력이란 근육이 실제로 수축하거나 또는 수축하려는 상태에서 저항에 대해 근육이 최대로 발휘할 수 있는 힘의 양으로 나타낼 수 있다. 근력이 강하면 관절이 서로 엇갈리어 빠지는 등의 상해를 예방 할 수 있다. 그리고 약 80% 정도의 아동이 경험하게 되는 허리 통증의 치료 및 자세 교정에 도움을 준다.

근지구력이란 근육활동을 계속 수행할 수 있는 지속시간, 혹은 일정한 동 작을 계속하여 반복하는 횟수 등으로 나타낼 수 있다.
근력과 근지구력은 일상생활을 영위하는데 필요한 체력의 요소이며 신체를 움직이는데 기본이 된다. 즉, 근력과 근지구력은 모든 형태의 작업과 놀이에서 다양하게 요구된다.

일반적으로 남자가 여자보다 근력이 강하다는 것은 사실이다. 그러나 나이와 성에 따라 근력이 다르지만 10세의 아동이 8세의 아동보다 꼭 강하다든지, 15세의 여아가 15세의 남아보다 약하다는 것이 아니라 동일한 성, 연령에서도 근력의 차이가 존재한다. 같은 연령이면서 근력이 다른 이유 중의 하나는 아동의 성장속도가 개인에 따라 다르기 때문이다.

(나) 심폐지구력
심폐지구력은 "심장, 폐, 혈관 및 다른 신체기관이 효과적으로 작동할 수 있는 능력"이다. 아동이 운동 시 많은 양의 산소를 섭취하기 위해서는 많은 양의 혈액을 운반할 수 있는 건강한 심장과 혈관계의 능력이 필요하다. 아동의 심폐지구력 항상하기 위해서는 심장과 폐에 자극을 주는 전신운동을 계속하여야 하며 이로 인해 심장의 근육이 발달하여 한 번의 박동으로 보다 많은 피를 운반에 공급할 수 있게 된다. 이 과정을 통해서 아동은 더 높은 강도에서 장시간동안 피로감 없이 운동할 수 있는 능력을 키울 수 있다. 격렬하고 힘든 운동이 아동의 심폐지구력을 어느 정도는 향상시킬 수 있겠지만 아동기는 다른 신체기관과 마찬가지로 심장과 폐가 미발달된 상태이므로 무리한 운동은 삼가야 한다.

(다) 체지방량
체지방량은 전 신체에서 지방이 차지하는 부분을 %로 나타낸 수치이다.
일반적으로 표준화된 진상에 대한 체중도표에서 10~20% 이상인 아동은 과다체중으로 간주한다. 따라서 비만의 범주는 표준값의 20% 이상인 아동이다. 아울러 아동의 영양 상태를 파악하기 위한 체지방의 과학적인 측정방법은 측정기를 사용하여 피부두께를 측정하는 것이다.

현재 취학연령 아동의 30~40%가 과다체중으로 나타났다. 이러한 아동은 성장하면서 비만으로 인한 각종질환 및 고통을 겪게 된다.

아동의 이와 같은 비만 문제는 이것을 별로 심각하게 생각하지 않는 부모나 지도교사에게 있다고 할 수 있다. 그러나 최근 들어 비만에 대한 활발한 홍보를 통해서 체지방에 대한 이해와 아울러 아동의 비만 해소를 위한 노력이 증대하고 있다.

(라) 유연성

일반적으로 유연성이란 각 관절의 구조 및 근육의 신전성, 그리고 관절을 싸고 있는 인대와 근막의 상태에 의해 결정되는 관절의 가동범위라고 할 수 있다. 따라서 유연성의 척도는 근막의 최대 가동범위이다.

 대부분의 아동들은 활동적인 특성 때문에 적당한 유연성 수준을 나타내지만, 가동범위의 감소는 동작이나 운동기술의 발현에 제약요소가 된다. 또한 대부분의 아동들은 운동과 스트레칭의 부족으로 대퇴후면의 유연성이 빈약한 상태이므로 이에 대한 효율적인 유연성 증진계획이 필요하다.

(마) 순발력과 민첩성

순발력이란 단위시간당 수행하는 작업량으로서 운동이나 일상적인 활동에 매우 중요하다. 근력을 적정 상태에서 발휘하는 힘이라고 한다면, 순발력은 동적 상태에서 발휘되는 힘이며, 일반적으로 근과위라고도 한다. 이러한 순발력은 민첩성 발달의 기초가 되는 점에서도 중요하다. 민첩
성이란 방향이나 몸의 위치 등을 신속하게 변화시켜서 다른 움직임으로 옮길 수 있는 능력으로써, 속도와 협력만 아니라 균형, 그리고 협응성과도 상호 관련되어 있다. 이 중 속도에 관한 능력은 부분적으로 타고 나지만, 훈련을 통해서도 향상될 수 있다. 민첩성은 평균 몸놀림 방향전환, 그리고 신속한 출발과 멈춤 등을 요구하는 게임을 선공시키는데 매우 중요한 체력요소이다.

최대의 근력으로 최대의 속도를 낼 수 있는 순발력과 그에 따른 민첩성의 발달은 성인이 운동능력 향상을 위한 아동기의 운동소질 계발이라는 측면에서 중요하며, 특히 순발력은 아동이 덜지고 뛰고, 차는 놀이를 할 때 필요한 기본적인 체력요소로서 협과 운동의 증가를 통하여 향상된다.

(바) 협응성

협응성이라 아동들이 운동을 효율적으로 수행하기 위하여 운동과 감각기관을 통합할 수 있는 능력을 말한다. 즉, 신체기관들이 서로 협력하여 동작을 이루는 능력을 협응력이라고 한다. 눈과 손, 눈과 발, 그리고 부드러운 동작 등 기본적인 요소들이 잘 조화되어야 하는 협응성은 운동을 제대로 할 수 있는 능력인 민첩성, 운동을 정확하고 섬세하게 할 수 있는 능력인 교치성, 신체를 균형있게 유지할 수 있는 능력인 평형성 등과 상호 관련이 있다. 그리고 협응성은 아동의 유연성과도 관련이 있으며, 신경과 근육이 조화롭게 협조하여 작용함으로써 운동을 효과적으로 수행할 수 있다. 이러한 협응성은 아동의 일상생활의 여러 부분에서 요구되며, 대부분의 운동 수행에 있어서도 성공을 위한 가장 중요한 체력요소이다.

이와 같이 여러 가지의 다른 체력요소와 상호 관련되어 있는 협응성은 신경기능의 하나로 운동을 계속하여 반복하면 두드리지게 발달된다. 따라서 공놀이 등 여러 가지 놀이를 성장기 아동에게 습득시키는 것은 신체발달 및 운동기능 계발이라는 면에서 큰 의미를 갖는다.
3) 아동기 체력 요인의 발달 및 아동 체력의 중요성

아동의 체력은 전체적으로 발달하는 것이겠지만 체력별 발달 정도가 다르고 훈련에 따라 그 발달 강도도 차이가 난다. 체력 요인의 발달은 간단히 요약하면 다음과 같다.(예종이, 2000).

(1) 근력의 크기는 근육의 단면적과 작은 근내부저항 및 반작용 효과, 역학적으로 효과적인 움직임 등에 의하여 결정되며, 운동을 통한 능력 증가는 지구력보다 느리다(예: 무게 들기, 배근력 등).

(2) 지구력은 근지구력과 호흡 및 순환계 지구력으로 나눈다. 근지구력은 근육 속에 분포한 모세혈관의 수가 관계되며 근력보다 운동을 통한 능력 증가가 빠르고 운동을 중지하면 감소가 빠르다(예: 탁구, 손 짚고 팔굽혀펴기, 보그리 뛰기 등).

또, 호흡 및 순환계 지구력은 심폐의 능력으로 심장의 박출량, 혈액내의 해모글로빈의 수에 관계된다.

(3) 순발력의 크기는 큰 근력, 빠른 속도, 속도와 힘을 결합하는 기술에 따라 결정되는데 다른 요인에 비하여 훈련을 통한 발전의 속도가 가장 느리다(예: 제자리 높이뛰기, 제자리 멀리뛰기, 공던지기 등).

(4) 민첩성은 가장 높은 정도의 신경근육 훈련을 대표하며 유전적으로 많은 영향을 받으나 후천적으로도 개발이 가능하다(예: 장애물 달리기, 테니스, 배드민턴, 빨리 뛰어넘기 등).

(5) 유연성은 운동을 통하여 개선되며 과도한 양의 정적 수축은 유연성에 좋지 않다(예: 허리돌리기, 어깨 돌리기, 심호흡, 굴신운동, 맨손체조 등).

(6) 균형성은 신체를 조절하는 신경근육 기술로서 운동감각의 발달과 상응하며 일상생활에도 매우 중요한 요인이다. 균형성이 결핍은 신체지각 또는 운동감 등으로 개선이 가능하기 때문에 여기에 해당하는 종목을 선택해서 발전시키려 한다(예: skating, ski, dumbling, cycling, 손 짚고 거꾸로
로 서기 등).

이상에서 제시한 아동 체력의 중요성에 따라 우리나라에서도 학생체력검사를 실시하고 있으나 입시 위주의 교육풍토에서 체력의 수준을 향상시키려는 본래의 목적을 상실하고 있고 또 관심마저도 이끌어내지 못하고 있는 것으로 진단된다.

이에 바람직한 아동의 건강 및 체력 유지를 위하여 기초체력이 부진한 아동들에 대하여 특별한 프로그램의 개발 및 투입이 개별화 교육을 추구하는 오늘날의 체육 교육에 보다 부합하는 한 방법이 될 것이다.

4. 선행연구 분석

1) 선행 연구 내용 분석

본 연구에서 의도하는 연구 방향과 관련이 있는 선행 연구 내용의 분석된 내용은 다음과 같다.

(1) 서킷트 운동 프로그램 처방이 기초체력에 미치는 영향

(가) 민첩성이나 스피드(50m 달리기) 측면

손재락(2002)의 체육수업 중에 실시하는 서킷트 트레이닝이 중학생의 기초체력에 미치는 영향에서 실험집단이 비교집단보다 검사 결과 기초체력의 100m 달리기에서 실험집단이 비교집단보다 0.25sec 빠르게 나타나므로, 실험 처치의 효과가 있다고 나타났으며, 김충현(2002)은 서킷트 트레이닝이 아동의 체력 및 100m 기록에 미치는 영향에서 두 집단 모두 슐차상의 차이는 있으나 유의한 차는 보이지 않았다. 김형언(1997)은 보조보강운동프로그램 학습이 아동의 기초체력에 미치는 연구결과에서 순발력 및

(나) 근지구력(윗몸일으키기) 측면

프로그램 학습이 아동의 기초체력에 미치는 연구에서 실험집단이 순자상 차이는 있었으나 유의한 차이는 나타나지 않았다고 보고 하였다.

(다) 순발력(제자리멀리뛰기) 측면

(라) 전신지구력(오래달리기) 측면
로 보고되었다.

(마) 유연성(윗몸앞으로 굽히기) 측면

이선호(2008)는 순환운동과 유산소성 운동을 8주간 실시한 후 여자 고등학생의 신체조성 및 체력에 미치는 영향을 분석한 결과 순환운동과 유산소성 운동 집단 모두 체지방은 감소되었고, 유연성, 배근력, 지구력은 항상되었으며, 순환운동 집단의 유산소성 운동 집단 보다 골격근량이 좀 더 발달했으나 심폐지구력은 유산소성 운동 집단이 좀 더 발달할 수 있을 것이라 판단하였다.

김상훈(1996)의 12주간의 서킷트레이닝이 체력 향상에 미치는 영향에서는 근지구력, 민첩성, 근력과 순발력이 각각 유의한 차이가 있는 것으로 나타났다.
(2) 다른 운동프로그램이 기초체력에 미치는 영향

(가) 송신태(2005)는 놀이 운동프로그램을 적용한 준비운동이 초등학생의 기초체력에 미치는 영향의 연구에서 6학년 학생을 대상으로 주3회, 15분씩 12주를 실시한 결과 민첩성, 순발력, 유연성, 복근력, 심폐지구력 모두에 유의한 차이가 있다고 보고하였다.

(다) 장명숙(2004)은 음악줄넘기 운동이 초등학교 아동의 기초체력 향상에 미치는 영향의 연구에서 5학년 학생을 대상으로 주6일, 40분씩(회), 8주 실시한 결과 50m 달리기, 윗몸일으키기, 제자리 멀리뛰기, 오래달리기(1,000m)의 50m 달리기, 윗몸일으키기, 제자리 멀리뛰기, 오래달리기(1,000m)의 50m 달리기, 윗몸일으키기, 제자리 멀리뛰기, 오래달리기(1,000m)에는 유의한 차이가 있었으나 제자리 멀리뛰기와 앉아 앞으로 굽히기에는 유의한 차이가 없다고 보고하였다.

(라) 김영길(2007) 아침 음악줄넘기 운동이 초등학생의 기초체력 향상에 미치는 영향의 연구에서 5학년 대상으로 주5회, 아침에 20분씩(회), 16주 동안 실시한 결과 50m 달리기, 윗몸일으키기, 오래달리기(1,000m)에는 유의한 차이가 있었으나 제자리 멀리뛰기와 앉아 앞으로 굽히기에는 유의한 차이가 없다고 보고하였다.

2) 선행 연구의 시사점

위의 선행 연구가 본 연구에 주는 시사점을 서술하면

(1) 서킷트 트레이닝 방법이 체력 향상에 유의한 차이가 있는 것으로 나타났다.
(2) 체력분야에 긍정적인 영향이 있는 것으로 나타났다.
(3) 서킷트 트레이닝 방법이 흥미 있고 체력도 향상됨이 나타났다.
(4) 중·고등학생들의 연구는 많이 있었지만 초등학생들을 대상한 연구는 미흡하였다.
(5) 주로 학교 시설 및 기구를 이용한 순환운동 프로그램이었으며, 시간과 장소의 구애 없이, 그리고 조직적이고 체계화된 프로그램이 없었다.
(6) 아동들의 기초체력을 향상시키기 위해 지속적인 운동이 이루어질 수 있는 다양한 프로그램이 개발되어야하고, 제공된 프로그램이 생활화되어 아동들의 기초체력을 향상시켜야 하겠다.
III. 연구방법

1. 연구 대상

<표 2> 집단의 신체적 특성

<table>
<thead>
<tr>
<th>구분</th>
<th>N</th>
<th>신장(cm)</th>
<th>체중(㎏)</th>
<th>BMI(㎏/㎡)</th>
</tr>
</thead>
<tbody>
<tr>
<td>실험집단</td>
<td>14</td>
<td>133.37±6.55</td>
<td>30.42±5.93</td>
<td>17.01±2.55</td>
</tr>
<tr>
<td>통제집단</td>
<td>14</td>
<td>135.31±6.38</td>
<td>33.47±6.61</td>
<td>18.11±2.02</td>
</tr>
</tbody>
</table>

2. 연구 대상자 신체 특성 비교

<표 3> 연구 대상자 신체 특성 비교

<table>
<thead>
<tr>
<th>구분</th>
<th>집단</th>
<th>N</th>
<th>M</th>
<th>SD</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>신장</td>
<td>실험집단</td>
<td>14</td>
<td>134.16</td>
<td>6.05</td>
<td>-.144</td>
<td>.886</td>
</tr>
<tr>
<td></td>
<td>통제집단</td>
<td>14</td>
<td>134.52</td>
<td>7.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>체중</td>
<td>실험집단</td>
<td>14</td>
<td>17.07</td>
<td>2.27</td>
<td>-.867</td>
<td>.394</td>
</tr>
<tr>
<td></td>
<td>통제집단</td>
<td>14</td>
<td>18.05</td>
<td>2.36</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
<표 3>과 같이 실험집단과 통제집단 학생을 선정하였다. 실험 집단과 통제집단 학생의 신장과 체중은 <표 3>과 같다. <표 3>과 같이 신장 (t=-.144, p>.05)과 체중(t=-.867, p>.05)의 독립 t-test를 실시한 결과 두 집단 간 유의한 차이가 없었다(t=-1.116, p>.05).

3. 연구방법 및 절차

1) 측정집단의 동질성 측정

실험 처치 전 윗몸일으키기, 제자리멀리뛰기, 오래달리기- 걷기(600m), 50m 달리기, 앉아 윗몸 앞으로 굽히기에 대한 실험집단과 통제집단의 동질성 여부를 확인하기 위해 각 종목별 실험집단과 통제집단의 사전검사 기록에 대해 독립 t-test를 실시한 결과는 <표 4>와 같다.

<표 4> 종목별 사전 검사 비교

<table>
<thead>
<tr>
<th>구분</th>
<th>집단</th>
<th>N</th>
<th>M</th>
<th>SD</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI (신체질량지수)</td>
<td>실험집단</td>
<td>14</td>
<td>17.07</td>
<td>2.27</td>
<td>-.116</td>
<td>275</td>
</tr>
<tr>
<td></td>
<td>통제집단</td>
<td>14</td>
<td>18.05</td>
<td>2.36</td>
<td>-.116</td>
<td>275</td>
</tr>
<tr>
<td>윗몸일으키기 (근지구력)</td>
<td>실험집단</td>
<td>14</td>
<td>25.36</td>
<td>11.75</td>
<td>.706</td>
<td>486</td>
</tr>
<tr>
<td></td>
<td>통제집단</td>
<td>14</td>
<td>22.14</td>
<td>12.34</td>
<td>.706</td>
<td>486</td>
</tr>
<tr>
<td>제자리멀리뛰기 (순발력)</td>
<td>실험집단</td>
<td>14</td>
<td>133.00</td>
<td>14.86</td>
<td>.914</td>
<td>369</td>
</tr>
<tr>
<td></td>
<td>통제집단</td>
<td>14</td>
<td>128.29</td>
<td>12.31</td>
<td>.914</td>
<td>369</td>
</tr>
</tbody>
</table>
오래달리기-걷기 (600m)
실험집단 14 257.43 24.68
통제집단 14 266.21 28.59
통제집단과 실험집단의 BMI는 통계적으로 유의한 차이를 보이지 않았다 (t=-.870, p>.05).

50m 달리기 (스피드)
실험집단 14 10.37 .91
통제집단 14 10.32 .87
통제집단과 실험집단의 50m 달리기는 통계적으로 유의한 차이를 보이지 않았다 (t=.149, p>.05).

앉아 윗몸 앞으로 굽히기 (유연성)
실험집단 14 13.20 5.17
통제집단 14 11.39 5.01
통제집단과 실험집단의 앉아 윗몸 앞으로 굽히기는 통계적으로 유의한 차이를 보이지 않았다 (t=.943, p>.05).

표 4에서 보는 바와 같이 사전 검사 결과 실험집단과 통제집단의 BMI는 17.07, 통제집단 18.05로 두 집단 간 유의한 차이를 보이지 않았으며 (t=-1.116, p>.05). 윗몸 앞으로 굽히기는 실험집단 평균 25.36, 통제집단 22.14로 유의한 차이를 보이지 않았으며 (t=.706, p>.05). 앉아 윗몸 앞으로 굽히기는 실험집단 평균 13.20, 통제집단 11.39로 유의한 차이를 보이지 않았다 (t=.943, p>.05).

따라서 실험집단과 통제집단은 근지구력, 순발력, 전신지구력, 스피드, 유연성 등에 있어서 통계적으로 유의한 차이가 나타나지 않았으므로 동일 집단임이 확인되어 실험 처치는 의미 있는 것으로 검정되었다.

2) 실험 절차

본 연구에 참가하는 실험집단 14명을 대상으로 순환운동을 8주 동안
운동 강도 60~70% HRmax(운동을 실시하면서 심박수 측정)
- 운동 빈도는 주5회
- 운동시간은 12분간 실시

운동 전·후 스트레칭으로 가볍게 몸을 풀고 실험집단 14명은 10개의 종목을 각 24초씩 4분간 3회 반복하여 실시하고, 통제집단 14명은 아무것도 실시하지 않았다.

(1) 피험자 선정
K초등학교 3학년 학생을 대상으로 과거에 운동선수 경험이 없고 규칙적으로 운동을 하지 않는 학생을 선정하여 실험집단 14명, 통제집단 14명을 무선 표집 하였다.

(2) 사전검사
피험자 28명 모두 신장과 체중을 통해 체질량지수(BMI)를 측정하고 기초 체력(50m 달리기, 엎 дир 앞으로 굽히기, 제자리 멀리뛰기, 엎 дир 앞으로 힘 기기, 600m 달리기)을 측정하였다.

(3) 순환운동 프로그램 적용
실험집단에 순환운동 프로그램을 8주 동안 실시하였다.

(4) 사후검사
순환운동 처방 8주 후 재검사(50m 달리기, 엎 дир 앞으로 굽히기, 제자리 멀리뛰기, 엎 дир 앞으로 힘 기기, 오래 달리기-걷기(600m)를 하였다.
4. 측정 항목

본 연구의 효과를 검증하기 위하여 다음과 같이 측정항목을 선정하여 측정하였다.
1) 체질량 지수(BMI) : 신장과 체중을 이용하여 비만여부를 판정하는 신체질량지수(체중, 신장) = 체중(㎏)/신장(㎡)
2) 신장 : 단위(0.1cm 단위)
3) 체중 : 단위(0.1 cm 단위)
4) 근지구력 : 웅mom일으키기(1분)
5) 순발력 : 제자리멀리뛰기(cm 단위)
6) 전신지구력 : 오래달리기-걸기(600m)
7) 스피드 : 50m 달리기(0.1초 단위)
8) 유연성 : 앉아 웅mom 앞으로 굽히기(0.1cm 단위)

5. 측정방법 및 측정도구

1) 신체질량지수(Body Mass Index : BMI)
 (1) 준비물 : 신장계, 체중계
 (2) 측정한 체중과 신장의 제곱의 비율로 나타낸다.
 (3) 단위 : 체중(㎏)/신장²(㎡) = kg/m²

2) 웅mom일으키기(Sit-up)
 (1) 준비물 : 초시계, 측정대 또는 매트
 (2) 측정단위 : 1분 동안 실시한 횟수를 계측
(3) 측정방법

(가) 피검자는 발을 30cm 정도 벌리고 무릎을 직각으로 굽히고 양손은 머리 뒤에서 깍지를 기고 등을 메트에 대고 놓는다.
(나) 보조자가 피검자의 발목을 양손으로 누른 준비 상태에서 "시작"과 동시에 상체를 일으켜 양쪽 팔꿈치가 양 무릎에 닿은 다음, 다시 누운 자세로 돌아가게 한다.
(다) 양 팔꿈치가 양 무릎에 닿은 횟수만 인정하며 1회 실시를 원칙으로 한다.
(라) 각도는 평면한 곳에서 실시한다.

3) 제자리멀리뛰기(Standing Long Jump)

(1) 시설 및 준비물: 모래밭, 고무래, 줄자, 빗자루
(2) 측정단위: cm 단위로 계측
(3) 측정방법
(가) 피검자는 발구름판 위에 10-20cm 정도 발을 벌리고 편한 자세를 취 한다.
(나) 구름판 표시를 넘지 않도록 서서 팔이나 몸, 다리로 충분하게 반동 을 주어 가능한 멀리 뛴다.
(다) 발구름선에서 가장 가까운 발 뒷꿈치의 착지점까지 거리를 구름선과 직각으로 계측한다.
(라) 2회 실시하여 좋은 기록을 탭한다.
(4) 측정 시 유의사항
(가) 발구름선의 높이와 모래 표면의 높이는 가능한 수평이 되도록 한다.
4) 50m달리기(50m Dash)

(1) 시설 및 준비물: 50m코스 (길이 50m, 폭 1.25m), 초시계(1/100초), 출발 신호기, 결승 테이프
(2) 측정단위: 1/10초까지 계측
(3) 측정방법
 (가) 출발 신호원은 "제자리에"라는 출발 준비를 시키고 "차릿"이라는 구령 후 약 2초의 간격을 두었다가, 출발 신호기를 밑에서 위로 높이 든다.
 (나) 출발은 스탠딩 스타트로 하며, 계시원은 피검자의 동체 부위가 결승 선에 닿는 순간을 계측한다.

5) 앉아 윗몸 앞으로 굽히기(Sit and reach)

(1) 준비물: 앉아 윗몸 앞으로 굽히기 검사기구
(2) 측정단위: 0.1cm 단위까지 계측
(3) 측정방법
 (가) 피검자는 신을 벗고 양말바닥이 측정기구의 수직면에 완전히 닿도록 무릎을 파고 바르게 앉는다.
 (나) 양발 사이의 거리는 5cm가 넘지 않도록 한다.
 (다) 피검자는 양손을 쭉 펴서 측정자 위에 대고 준비자세를 취한다.
(4) 측정시 유의사항
 (가) 양손 끝으로 똑바로 밀어야 한다.
 (나) 몸의 반동을 주지 못하게 한다.
 (다) 무릎이 구부러지지 않도록 한다.
6) 600m달리기 (600m Run)
(1) 시설 및 준비물 : 200m 트랙, 출발신흠기, 호각, 초시계, 횟수 표시판, 기록용지, 순위표
(2) 측정단위 : 초 단위로 계측한다.
(3) 측정방법
(가) 피검자는 출발선에 스탠딩 스트트 자세로 출발 신호기의 신호에 의하여 출발 한다.
(나) 트랙을 통과한 횟수를 피검자에게 알려준다.
(다) 달릴 때는 자신의 능력에 맞는 페이스 조절을 할 수 있도록 하며 전체거리를 완주할 수 없다면 걸어도 좋다는 설명을 반드시 해준다.
(4) 측정 시 유의사항
(가) 충분한 준비운동을 실시한다.

6. 운동프로그램

1) 순환운동의 구성요소
<표 5>는 박동호 (2006)에 의해 만들어진 순환운동 프로그램으로서 각각 다섯 가지의 근력 운동과 유산소운동을 교차하여 실시하는 운동으로 짧은 시간에 웨이트트레이닝 효과를 나타내는 근력과 조깅이나 달리기와 같은 운동 효과를 나타내는 심폐지구력을 동시에 향상시킬 수 있다. 장점은 커다란 공간과 운동기구가 필요하지 않기 때문에 장소와 운동기구에 구애받지 않고 언제 어디서나 운동을 할 수 있는 운동이다.
<표 5> 순환운동 구성요소

<table>
<thead>
<tr>
<th>종 목</th>
<th>운 동 방 법</th>
<th>시간</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>점프하며 털기 제자리에서 가볍게 뛰며 팔과 다리를 털어준다</td>
<td>24초</td>
</tr>
<tr>
<td>2</td>
<td>팔굽혀 펴기 팔굽혀 펴기</td>
<td>"</td>
</tr>
<tr>
<td>3</td>
<td>제자리 달리기 70% 수준으로 가볍게 무릎을 울리며 달린다.</td>
<td>"</td>
</tr>
<tr>
<td>4</td>
<td>스쿼트 다리를 어깨 너비로 뻗어 영딩이를 뒤로 밀 상태에서 천천히 무릎을 굽힌다.</td>
<td>"</td>
</tr>
<tr>
<td>5</td>
<td>다리 들어 올리 걷기 허벅지가 가슴에 닿을 정도로 허리가 움직이지 않게 올린다.</td>
<td>"</td>
</tr>
<tr>
<td>6</td>
<td>크 런 치 몸을 완전히 일으키지 않고 상체와 구두부만 일으킨다.</td>
<td>"</td>
</tr>
<tr>
<td>7</td>
<td>스 템 낮은 높이의 발판에 한발씩 차례로 뛰어온다.</td>
<td>"</td>
</tr>
<tr>
<td>8</td>
<td>사이드런지 한발을 움직이지 않고 다른 다리와 45도 각도로 밀어내기</td>
<td>"</td>
</tr>
<tr>
<td>9</td>
<td>팔-다리 벌리뛰기 다리판 벌리뛰기를 실시한다.</td>
<td>"</td>
</tr>
<tr>
<td>10</td>
<td>배 근 앞뒤로 상태에서 팔 다리를 뻗고 2,3초 동안 머물다가 상태를 들면서 올리면서 발을 밟으며 제자리로 돌아오면서 숨을 내쉰다</td>
<td>"</td>
</tr>
</tbody>
</table>

합 계 | 4분 |

1회 실시하면 4분, 3회 반복 = 12분

7. 자료처리

본 연구에서 얻은 자료는 실험집단과 통제 집단 간에 체력요인을 진행실험 설계방안의 전·후 검사 통제집단 설계방법으로 SPSS WINDOWS 12.0을 이용하여 통계처리를 하였으며 그 구체적인 분석내용은 다음과 같다.
1) 순환운동이 초등학생의 기초 체력 향상에 미치는 영향을 알아보기 위하 여 통제집단과 실험집단의 신체적 특성과 사전 검사의 기초 체력의 동질성을 알아보기 위하여 독립표본 t검정(Independent t-test)을 실시하였다.

2) SPSS 통계프로그램을 사용하여 순환 운동이 초등학생의 기초 체력 향상에 미치는 영향을 알아보기 위하여 효과를 알아보기 위하여 사전검 사와 사후 검사간의 유의성을 검증하기 위하여 이원혼합(two-way Mixed ANOVA)을 실시하였다.
본 연구에서는 인천 K초등학교 3학년 학생 28명(남: 14명, 여: 14명)을 8주간 순환운동이 초등학생의 기초체력에 어떠한 영향을 미치는지를 검증하기 위해 실험집단과 통제집단으로 구분하여 연구한 결과는 다음과 같다.

1. 순환운동이 신체질량지수에 미치는 영향

1) 신체질량지수(BMI)

순환운동이 신체질량지수에 미치는 영향을 알아보기 위해 신체질량지수를 측정하였으며, 실험 전·후의 향상도는 <표 6> <그림1>과 같다.

<table>
<thead>
<tr>
<th>구분</th>
<th>집단</th>
<th>사전</th>
<th>사후</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>신체질량지수(BMI)</td>
<td>실험집단</td>
<td>17.07±.62</td>
<td>16.50±.65</td>
<td>11.26</td>
<td>.002</td>
</tr>
<tr>
<td>통제집단</td>
<td>18.05±.62</td>
<td>17.80±.65</td>
<td></td>
<td>1.792</td>
<td>.192</td>
</tr>
</tbody>
</table>
8주간의 실험 결과 각 집단 간의 신체질량지수(BMI)에 대한 변화를 비교하면 집단과 시기 간 상호작용에는 유의한 차가 없었지만, 시기 간에 유의한 차가 있었다(p<.002). 집단들 비교해 보면 실험집단에서 시기 간 유의한 차가 나타났다(p<.01). 실험집단에서 신체질량지수가 줄어들었다는 것은 장시간의 순환운동을 할 경우 체중이 감소될 수 있다고 생각한다.

2) 신장과 체중

순환운동이 신장과 체중에 미치는 영향을 알아보기 위해 신장과 체중을 측정하였으며, 실험 전·후의 향상도는 <표 7>, <표 8>, <그림 2>, <그림 3>과 같다.
<표 7> 실험 전·후의 집단 및 시기별 신장의 변화

<table>
<thead>
<tr>
<th>구분</th>
<th>집단</th>
<th>사전</th>
<th>사후</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>신장</td>
<td>실험집단</td>
<td>134.16±1.75</td>
<td>135.17±1.78</td>
<td>233.347</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>통제집단</td>
<td>134.52±1.75</td>
<td>135.66±1.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>시기</td>
<td>집단×시기</td>
<td>.840</td>
<td>.368</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* **: p<.001(시기 간 차이)

<그림 2> 집단 간 시기별 신장의 변화

8주간의 실험 결과 각 집단 간의 신장에 대한 변화를 비교하면 집단과 시기 간 상호작용에는 유의한 차가 없었지만, 집단들 비교하면 두 집단 모두 시기 간 유의한 차가 나타났다(p<.001). 이러한 결과는 실험·통제 집단 모두 실험기간 동안 자연적인 성장이라고 볼 수 있다.
체중에 유의한 차이는 없지만 <그림 3>에서 보는 것과 같이 실험집단은 평균 0.57kg 줄어들었고 반면 통제집단은 0.17kg 증가한 것으로 보아 장기간 순환운동을 실시할 경우 체중이 감소할 것으로 생각된다.
2. 순환운동이 기초체력에 미치는 영향

1) 근지구력(윗몸 일으키기)

순환운동이 근지구력에 미치는 영향을 알아보기 위해 윗몸 일으키기를 측정하였으며, 실험 전·후의 향상도는 다음과 같다.

<table>
<thead>
<tr>
<th>구분</th>
<th>집단</th>
<th>사전</th>
<th>사후</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>근지구력</td>
<td>실험집단</td>
<td>25.36±3.22</td>
<td>32.43±3.29</td>
<td>26.000</td>
<td>.021</td>
</tr>
<tr>
<td></td>
<td>통제집단</td>
<td>22.14±3.22</td>
<td>24.71±3.29</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

그림 4 집단 간 시기별 근지구력의 변화

8주간의 실험 결과 각 집단 간의 근지구력(윗몸 일으키기)에 대한 변화를
비교하면 실험집단의 경우 실험 전 25.36±3.22에서 실험 후 32.43±3.29로 웰돌림을 기록한 것으로 나타났으며, 통제집단의 경우 실험 전 22.14±3.22에서 실험 후 24.71±3.29로 기록이 평균 2.57회 늘어나. <표 9>과<그림 4>에서 나타난 바와 같이 시기와 집단 간의 상호작용에서 통계적으로 유의한 효과가 나타났다(p<.021). 이는 순환운동이 근지구력 향상에 긍정적인 효과를 나타냈다고 할 수 있다.

2) 순발력(제자리 멀리뛰기)
순환운동이 순발력(제자리 멀리뛰기)에 미치는 영향을 알아보기 위해 제자리 멀리뛰기를 측정하였으며, 실험 전 후의 향상도는 다음과 같다.

<table>
<thead>
<tr>
<th>구분</th>
<th>집단</th>
<th>사전</th>
<th>사후</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>실험집단</td>
<td>133.00±3.65</td>
<td>140.71±3.90</td>
<td>시기 64.709</td>
<td>.000</td>
</tr>
<tr>
<td>순발력</td>
<td>통제집단</td>
<td>128.29±3.65</td>
<td>133.35±3.90</td>
<td>시기×집단</td>
<td>2.765</td>
</tr>
</tbody>
</table>

<표 10> 실험 전·후의 집단 및 시기별 제자리 멀리뛰기의 변화

*** : p<.001(시기 간 차이)

<그림 5> 집단 간 시기별 순발력의 변화
8주간의 실험 결과 각 집단 간의 순발력(제자리멀리뛰기)에 대한 변화를 비교하면 실험집단의 경우 실험 전 133.00±3.65에서 실험 후 140.71±3.90로 순발력 기록이 평균 7.71㎝ 늘어난 것으로 나타났으며, 통제집단의 경우 실험 전 128.29±3.65에서 실험 후 133.35±3.90로 기록이 평균 5.06㎝ 늘어났다. <표 10>과<그림 5>에서 나타난 바와 같이 두 집단은 시기와 집단 간에는 유의한 효과가 나타나기 않았으며(p<.108), 두 집단 모두 시기 간에서 높은 유의한 차이가 나타났다(p<.000). <그림 5>에서 보는 것과 같이 장기간 순환운동을 실시하였을 때 순발력 향상에 도움은 되는 것으로 생각된다.

3) 전신 지구력(600m 달리기)

순환운동이 전신 지구력(600m 달리기)에 미치는 영향을 알아보기 위해 600m 달리기를 측정하였으며, 실험 전·후의 향상도는 <표 11> <그림 6>과 같다.

<표 11> 실험 전·후의 집단 및 시기별 600m 달리기의 변화

<table>
<thead>
<tr>
<th>구분</th>
<th>집단</th>
<th>사전</th>
<th>사후</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>전신</td>
<td>실험 집단</td>
<td>257.43±7.14</td>
<td>243.50±8.18</td>
<td>11.777</td>
<td>.002</td>
</tr>
<tr>
<td>지구력</td>
<td>통제 집단</td>
<td>266.21±7.14</td>
<td>262.43±8.18</td>
<td>시기×집단 3.861</td>
<td>.060</td>
</tr>
</tbody>
</table>
8주간의 실험 결과 각 집단 간의 전신 지구력(600m 달리기)에 대한 변화를 비교하면 실험집단의 경우 실험 전 257.43±7.14(초)에서 실험 후 243.50±8.18(초)로 전신지구력 기록이 평균 13.93(초) 단축된 것으로 나타났으며, 통제집단의 경우 실험 전 266.21±7.14(초)에서 실험 후 262.43±8.18(초)로 기록이 평균 3.78(초) 단축된 것으로 나타났다. 시기와 집단 간에는 유의한 효과가 나타나지 않았지만, 시기 간에서 유의한 차이가 났다(p<.002). 집단들 비교하면 <그림 6>에서 나타난 바와 같이 실험 집단에서 시기 간 유의한 효과가 나타났다(p<.004). 이는 장기적인 순환운동을 실시할 경우 전신지구력 향상시키는데 도움이 될 수 있는 운동이라고 생각된다.

4) 스피드(50m 달리기)

순환운동이 스피드(50m 달리기)에 미치는 영향을 알아보기 위해 50m 달리기를 측정하였으며, 실험 전·후의 향상도는 다음과 같다.
<표 12> 실험 전·후의 집단 및 시기별 50m 달리기의 변화

<table>
<thead>
<tr>
<th>구분</th>
<th>집단</th>
<th>사전</th>
<th>사후</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>스피드</td>
<td>실험집단</td>
<td>10.37±.24</td>
<td>10.04±.24</td>
<td>시기</td>
<td>6.665</td>
</tr>
<tr>
<td></td>
<td>통제집단</td>
<td>10.32±.24</td>
<td>10.21±.24</td>
<td>시기×집단</td>
<td>1.614</td>
</tr>
</tbody>
</table>

8주간의 실험 결과 각 집단 간의 스피드(50m 달리기)에 대한 변화를 비교하면 실험집단의 경우 실험 전 10.37±.24(초)에서 실험 후 10.04±.24(초)로 스피드 기록이 평균 0.33(초) 단축된 것으로 나타났으며, 통제집단의 경우 실험 전 10.32±.24(초)에서 실험 후 10.21±.24(초)로 기록이 평균 0.11(초) 단축된 것으로 나타났다. 시기와 집단 간에는 유의한 효과가 나타나지 않았지만, <표 12>에서 나타난 바와 같이 시기 간에서 유의한 차이가 나타나(p<.016). 집단들 비교하면 실험집단에서 시기 간 유의한 효과가 나타났다(p<.009).
이는 장기간 순환운동을 실시할 경우 스피드를 향상시키는데 도움이 될 수 있는 운동이라고 생각된다.

5) 유연성(앉아 뒤택 앞으로 굽히기)
순환운동이 유연성(앉아 뒤택 앞으로 굽히기)에 미치는 영향을 알아보기 위해 뒤택 앞으로 굽히기를 측정하였으며, 실험 전·후의 향상도는 다음과 같다.

<표 13> 실험 전·후의 집단 및 시기별 앉아 앞으로 굽히기의 변화

<table>
<thead>
<tr>
<th>구분</th>
<th>집단</th>
<th>사전</th>
<th>사후</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>유연성</td>
<td>실험 집단</td>
<td>13.20±1.36</td>
<td>16.29±1.32</td>
<td>12.318</td>
<td>.002</td>
</tr>
<tr>
<td></td>
<td>통제 집단</td>
<td>11.39±1.36</td>
<td>12.30±1.32</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<그림 8> 집단 간 시기별 유연성의 변화

† : p<.05(상호작용)

8주간의 실험 결과 각 집단 간의 유연성(앉아 뒤택 앞으로 굽히기)에 대해
한 변화를 비교하면 실험집단의 경우 실험 전 13.20±1.36에서 실험 후 16.29±1.32로 웅집 앞으로 굽히기 기록이 평균 3.09㎝ 늘어난 것으로 나타났으며, 통제집단의 경우 실험 전 11.39±1.36에서 실험 후 12.30±1.32로 기록이 평균 0.91㎝ 늘어났다. <표 13>과<그림 8>에서 나타난 바와 같이 시기와 집단 간의 상호작용에서는 통계적으로 유의한 효과가 나타났다 (p<.002). 이는 순환운동이 유연성을 기를 수 있는 운동임을 보여 주고 있다.
Ⅴ. 논의

본 연구의 목적은 날로 심각해지는 학생들의 체력저하 문제의식을 가지고 초등학교 3학년의 기초체력을 신장시킬 수 있는 프로그램을 학생들에게 적용해 보고 그 효과에 대해 비교 분석하여 학교체육현장에서 학생들의 기초체력을 강화하고 향상시키는데 있다.

연구 결과 순환운동을 통한 초등학생의 기초체력 향상 정도를 살펴보면 유연성과 근지구력에는 현저한 향상을 보였는데 신체질량지수, 순발력, 스피드, 전신지구력에 대해서는 8주간이라는 짧은 연구기간과 실험집단의 적은 사례수, 성장기 어린이의 체력적인 변수, 그리고 연구를 진행하면서 어린 학생들이 체력운동이 힘들고 재미없다는 생각으로 인해 자발적인 학습 동기가 결여되어 유의미한 결론을 도출하는데 무리가 있었으나 시기 간에는 향상되었다.

신체질량지수(BMI)는 키의 변화에 따라 체중을 평가하여 비만의 정도를 추정하기 위하여 쓰이는 방법으로 <그림 1>과 같이 실험집단에서 신체질량지수가 줄어들었다는 것은 장시간의 순환운동을 할 경우 체중이 감소될 수 있다고 생각한다.

순발력(제자리 멀리뛰기)의 향상은 남용현(2007)이 여자 중학생을 대상으로 순환운동을 실시한 결과 순발력 향상에 유의한 효과가 있었다는 연구 결과와도 일치한다.
전신지구력(600m 달리기)의 향상은 이원주(2007)의 초등학생에게 순환운동 프로그램 적용을 한 결과 전신지구력이 향상되었다는 연구 결과와도 일치한다.
스피드(50m 달리기)의 향상은 이원주(2007)의 초등학생에게 순환운동 프로그램 적용을 한 결과 전신지구력이 향상되었다는 연구 결과와도 일치한다.
유연성(윗몸 앉아 앞으로 굽히기)의 향상은 강봉철(2000)이 중학생을 대상으로 순환운동을 적용한 학습이 학습자의 체력에 미치는 효과를 비교한 결과 남녀 모두 유의한 차이가 나타났다는 연구 결과와 일치하였다.
Ⅵ. 결론 및 제언

1. 결론

본 연구는 순환운동이 초등학교 3학년의 신체질량지수(BMI)와 체력 향상에 미치는 영향을 알아보기 위하여 운동 강도를 60~70HRmax로 하여 일주일에 12분씩 5회간 운동을 실시하여 실험집단과 통제집단의 차이를 알아보고자 하였다.

첫째, 장기간 순환운동은 초등학생의 신체질량지수(BMI)를 낮춘다.
둘째, 장기간 순환운동은 초등학생의 기초체력 중 스피드, 전신지구력, 유연성, 순발력, 근지구력을 향상시킨다.

이상의 결과를 종합하여 볼 때 순환운동이 근지구력과 유연성 향상에 효과적인 운동임을 알 수 있으며, 또한 스피드, 순발력, 전신지구력에서는 실험집단에서 시기 간 유의한 차이가 나타난 것을 보아 장기간 순환운동을 실시하면 더 효과적이라는 것이다.
2. 제언

최근의 아동들은 식생활 등의 영향으로 과거보다 체격이 커졌으며, 과학 기술의 발달과 고도의 경제 성장은 우리의 생활을 편리하게 해주었다. 이러한 결과는 자라나는 초등학생들의 기초체력의 저하라는 심각한 문제를 안겨 주었다.

따라서 학교체육 활동을 통해 학생들의 기초체력을 향상시키는 것은 매우 중요한 일이며, 심리적, 인지적, 정의적 측면의 고른 발달을 통한 전반의 교육이라는 측면에서 다음과 같은 연구가 필요하다고 본다.

1) 학교 체육을 통해 학생들이 시간적, 공간적, 경제적 제약을 최소화하면서 기초체력을 향상 시킬 수 있는 다양하고 구체적인 프로그램 개발이 필요하다.
2) 순환운동 프로그램으로 학교 내 비만인 아동을 대상으로 한 비만치료 운동 프로그램이 필요하다.
3) 순환운동은 운동 강도가 높은 운동 프로그램으로 흥미를 감소시킬 수 있다. 따라서 학생들의 흥미를 유발하고, 자발적으로 참여할 수 있도록 다양한 놀이중심의 체력증진 프로그램이 개발되어야 한다.
4) 아동기 때부터 성인에 이르기까지 지속적으로 이루어 질 수 있는 위계화된 체력증진 프로그램 개발이 필요하다.
참고문헌

김충현(1982). 서킷트레이닝에 의해 체력 및 100m 기록에 미치는 영향. 대구대학교 교육대학원 석사학위논문.

치는 영향. 한국교원대학교 교육대학원 석사학위논문.
남상익(2002). 서킷트레이닝 프로그램 유형이 중학생의 기초체력 향상에 미치는 효과. 한국교원대학교 교육대학원 석사학위논문.
보건복지부(2001). 비만 아동을 위한 운동프로그램 개발 및 효과. 고려대학교 스포츠과학연구소.

ABSTRACT

Effects of Circuit on BMI and Physical Fitness of Elementary School Students

Se-hee Han
Major in sports & Physical Education
Graduate School of Education
INHA University

The purpose of this study is to closely examine its effects on BMI (Body Mass Index) and improvement in fundamental physical fitness after applying the Circuit Training Program for strengthening the fundamental physical fitness to 3rd graders of elementary school.

Aiming at the research objective, it re-constructed the program in line with elementary-school students’ physical fitness as for the aerobic exercise with 5 items and the muscular-strength exercise program with 5 items for "15-minute circuit training" by Park Dong-ho(2006), and carried out for totally 12 minutes by repetitively performing this three times through exercising at an interval of 24 seconds by each exercise item.

The research subjects were selected the experimental group with 14 people (boys:7, girls:7) and the control group with 14 people (boys:7, girls:7), who well understood the purport of this study and hoped
positive participation among 3rd graders of K elementary school in Incheon city. The experimental group was applied the circuit training. The control group was applied nothing.

The circuit training program had been applied for totally 8 weeks. The items were carried out such as BMI, situp, 50m running, Trunk Flexion Forward, the standing broad jump, and distance running–walking(600m) before and after experiment. The measured data was verified two-way Mixed ANOVA by using SPSS statistical program. As a result, the following conclusions were obtained.

First, the long-term circuit training lowered BMI in elementary–school students.

Second, the long-term circuit training enhanced speed, cardiovascular respiratory endurance, flexibility, power, and muscular endurance out of the fundamental physical fitness in elementary–school students.

Given synthesizing the above conclusions, the long-term operation of the circuit training program can be said to bring about the positive effect on reducing weight in elementary–school students and on enhancing fundamental physical fitness such as muscular endurance, flexibility, speed, cardiovascular respiratory endurance, and power in elementary–school students.