Nd:YAG-PLD법에 의해 제작된 ZnO:Al 박막의 구조적, 광학적, 전기적 특성

Abstract - Aluminum doped zinc oxide (AZO) thin films were deposited on corning glass substrates using an Nd:YAG pulsed laser deposition technology. The AZO thin films were deposited with various growth conditions such as the substrate temperature and oxygen partial pressure. In this work, we used various measurement technologies in order to investigate the electrical, structural, and optical properties of the AZO thin films. Among the AZO thin films, the one prepared at the substrate temperature of 300 °C and oxygen partial pressure of 5 mTorr showed the best properties of an electrical resistivity of 4.63×10^4 Ω-cm, a carrier concentration of 9.25×10^19 cm^-3, and a carrier mobility of 31.33 cm^2/V·s. All the AZO thin films showed an high average optical transmittance over 90 % in visible region.

Key Words : Pulsed Laser Deposition, Aluminum Doped Zinc Oxide, Transparent Conductive Oxide

1. 서론

투명 전도성 산화막(Transparent Conducting Oxide; TCO) 으로 표준화된 ITO(Indium Tin Oxide)는 낮은 비제과가 가시광선 영역에서 높은 투과도를 가지는 우수한 전기-광학적 특성으로 광전지 소재, 태양전지 소재, 광전서 소자 등 광전자 소자에 널리 사용되고 있다. 그러나 Indium의 고값에 따른 생산단가의 증가와 전자 소자 공정시 수소가스가 노출에 대한 화학적 불안정성으로 전기-광학적 특성이 저하되는 결과로 현재 ITO를 대체할 재료개발 연구가 활발한 진행 중에 있다[1]. 그 중 ZnO(Zinc oxide)는 전기적 특성, 광학적 특성, 그리고 폴리프타에 대한 내구성이 우수하고, 가격이 비교적 저렴하여 새로운 TCO로서 주목받고 있다. ZnO는 낮은 밴드갭(3.4 eV), 무독성, 그리고 가시광선 영역에서의 높은 투과도 특성과 60 mV의 높은 전기 접합 에너지를 가지는 육방정계 옐리트(hexagonal wurtzite) 결정구조를 가지는 II-VI족 화합물 반도체이다[2-3]. 상용적으로 ZnO 박막은 ~10^3 cm^2 씩의 전자 농도를 갖는 n-type 반도체 특성을 보이고, III-V 금속원소인 Al, Ga 및 In 등의 물질을 합성하면 TCO로서 우수한 전기-광학적 특성과 안정성을 나타낸다[4-5]. ZnO 박막은 화학가스증착(Chemical Vapor Deposition: CVD), 스피터링(Sputtering), 분자 붐 에피복제(Molecular Beam Epitaxy; MBE), 그리고 필스레이저 증착 (pulsed laser deposition; PLD) 등 다양한 공정기술로 제작될 수 있다[6]. 본 연구에서는 PLD 공정기술을 이용하여 고품질의 ZnO:Al(AZO) 박막을 제작하였다. PLD 공정기술은 비교적 낮은 온도에서 중력이 가능하고 높은 중력속도를 가지며 양질의 결정성 박막의 형성이 가능하다. 또한 낮은 산소분압에서 중력이 가능하고 산소분압을 쉽게 제어할 수 있다는 점도 공정상의 큰 장점이다. 본 논문에서는 Nd:YAG-PLD를 이용하여 AZO 박막을 제작하였고, 중력 조건변화에 따른 AZO 박막들의 구조적, 전기-광학적 특성을 연구하였으며, ITO를 대체할 투명 전도성 산화막으로서의 가능성을 제시하였다.

2. 실험

2.1 AZO 박막의 제작

시전 제작에 사용된 기관/코링 글라스를 Acetone, Ethanol, Decorex, DI-water 순서로 각각 10분씩 초음파 세척기로 세정하고, N2 가스를 사용하여 건조한 후 저하방에 최대 높도를 제어할 수 있는 기판 홀더에 고정시켰다. 그룹 1에 PLD 중력의 세척도를 나타내었다. 본 실험에서 레이저 소스로는 3.5 ns의 레이저 박박과 10 Hz의 반복율을 갖는 Quantel BrilliantB Q-switched 4th harmonic Nd:YAG laser (λ=266 nm)를 사용하였다. 박막의 손상을 피하려고 얕은 박막을 얇게 하기 위하여 낮은 에너지 박막의 공정 조건을 만들었고 1 J/cm^2 조건에서 가장 우수한 특성이 관찰되었다. 박막 제작 시 조건의 일관성을 위해 모든 샘플에 1 J/cm^2의 동일한 에너지 박막을 적용하였다. 촬영 내의 테스트 홀더에는 순도 99.99 %의 AZO 타겟(Zn : 98 wt.%, A12O3 : 2 wt.%)을
모듈만으로 제작된 AZO 박막의 우수한 c-축 배향성을 확인할 수 있었다. 평균 배수각 각각 다른 AZO 박막간의 배향성과 결정성의 정확한 비교를 통상적인 ZnO의 화학적 2θ=34.45° (002) 피크와 FWHM을 조사하여 수행하였다. AZO 박막의 배향성을 조사한 결과, 기판온도가 증가할수록 강한 (002) 피크를 나타내었다. 이것은 기판온도의 박막성장에 대한 2가지 영향으로 생각할 수 있다. 첫째는 기판온도의 증가는 표면에서 이온과 산소가 각각 1:1의 비율로 결합하기에 필요한 에너지로 온도의 형태로 증분히 제공하며, 따라서 형성하는 ZnO 박막의 조성은 고온에서 조성비가 잘 맞게 되고, 물질로 기판온도를 증가시킬 경우 온도의 공급으로 인해 주위의 산소가 반응을 촉진시키게 되어 평균 배수각 증가하게 된다.[7] 또한 기판온도의 증가에 따라 화합물이 증가하였고(2θ=33.59°, 33.73°, 34.13°, 34.41°), (002) 피크에 대한 29의 FWHM가 감소하는 것도 확인할 수 있었다. 이것은 성장된 AZO 박막의 기판면과 수직방향의 c-축 방향성을 나타내는데 박막성성 원추체(hexagonal wurtzite) 결정구조를 나타낸다. (002) 피크의 29 값은 온도가 증가함에 따라 표준 ZnO결정(2θ=34.45°)에 근접한다는 사실을 확인하였다. 또한 FWHM은 결정방향의 결정성을 통해 반비례하므로 아래 그림에서와 같이 100 °C~300 °C까지 온도의 증가에 따라 결정성이 증가하지만 300 °C~400 °C 사이에서의 결정성은 다시 약간 감소한다는 사실도 확인하였다. 이러한 결과는 산소분자와 결합하는 이온 분자의 양이 증가함에 따라 발생하는 압연분자와 맞혀지게 되므로 결정성이 감소하는 것으로 생각할 수 있다. 결과적으로 300 °C의 온도가 AZO 박막 성장의 최적 기판온도임을 확인하였다.

![Nd:YAG Laser Image](image)

**그림 1** Nd:YAG 필스레이저 중합시스템의 개념도

**Fig. 1** A schematic diagram of the Nd:YAG pulsed laser deposition system

3. 결과 및 고찰

3.1 AZO 박막의 구조적 특성

그림 2에 5 mTorr의 산소 분위기압에서 기판온도를 100 °C, 200 °C, 300 °C, 400 °C로 각각 변화시켜 제작한 AZO 박막의 XRD 패턴과 반폭치(Full Width Half Maximum, FWHM)를 나타내었다. PLD법으로 제작된 AZO 박막의 우수한 c-축 배향성을 확인할 수 있었다. 평균 배수각 각각 다른 AZO 박막간의 배향성과 결정성의 정확한 비교를 통상적인 ZnO의 화학적 2θ=34.45° (002) 피크와 FWHM을 조사하여 수행하였다. AZO 박막의 배향성을 조사한 결과, 기판온도가 증가할수록 강한 (002) 피크를 나타내었다. 이것은 기판온도의 박막성장에 대한 2가지 영향으로 생각할 수 있다. 첫째는 기판온도의 증가는 표면에서 이온과 산소가 각각 1:1의 비율로 결합하기에 필요한 에너지로 온도의 형태로 증분히 제공하며, 따라서 형성하는 ZnO 박막의 조성은 고온에서 조성비가 잘 맞게 되고, 물질로 기판온도를 증가시킬 경우 온도의 공급으로 인해 주위의 산소가 반응을 촉진시키게 되어 평균 배수각 증가하게 된다.[7] 또한 기판온도의 증가에 따라 화합물이 증가하였고(2θ=33.59°, 33.73°, 34.13°, 34.41°), (002) 피크에 대한 29의 FWHM가 감소하는 것도 확인할 수 있었다. 이것은 성장된 AZO 박막의 기판면과 수직방향의 c-축 방향성을 나타내는데 박막성성 원추체(hexagonal wurtzite) 결정구조를 나타낸다. (002) 피크의 29 값은 온도가 증가함에 따라 표준 ZnO결정(2θ=34.45°)에 근접한다는 사실을 확인하였다. 또한 FWHM은 결정방향의 결정성을 통해 반비례하므로 아래 그림에서와 같이 100 °C~300 °C까지 온도의 증가에 따라 결정성이 증가하지만 300 °C~400 °C 사이에서의 결정성은 다시 약간 감소한다는 사실도 확인하였다. 이러한 결과는 산소분자와 결합하는 이온 분자의 양이 증가함에 따라 발생하는 압연분자와 맞혀지게 되므로 결정성이 감소하는 것으로 생각할 수 있다. 결과적으로 300 °C의 온도가 AZO 박막 성장의 최적 기판온도임을 확인하였다.
그림 3은 300 °C의 기판온도에서 1 mTorr에서 50 mTorr까지 산소분압의 변화에 따라 성장된 AZO 박막의 XRD 패턴과 산소분압에 따라 변화하는 FWHM의 변화 그래프를 나타내었다. XRD 패턴은 산소분압에 의해 다양한 (002) 펌크가 관찰되었다. 또한 산소압의 변화에 따라 회절각의 변화(2θ=34.018°, 34.364°, 34.187°, 34.377°)가 관찰되었다. 여기서 우리는 (002) 펌크의 회절각이 산소분압에 의해서는 순차적으로 변하지만 산소분압에 의해서는 큰 변화를 보이지 않는 것을 확인하였다. (002) 펌크에 대한 4θ의 FWHM은 다양한 변화를 보였다. FWHM은 통해 5 mTorr의 산소분압에서 300 °C의 기판온도로 성장된 AZO 박막의 결정성이 가장 우수하다는 것을 확인할 수 있었다.

그림 4는 5 mTorr의 분위기 산소분압에서 기판온도의 변화에 따른 AZO 박막의 AFM 이미지로서 (a) 100 °C (b) 200 °C (c) 300 °C (d) 400 °C

Fig. 4 AFM images of the AZO thin films as a function of substrate temperature with oxygen partial pressure of 5 mTorr: (a) 100 °C (b) 200 °C (c) 300 °C (d) 400 °C

AFM 측정을 통해 AZO 박막의 표면형태와 표면거칠기를 관찰하였다. 그림 5는 5 mTorr의 산소분압에서 기판온도의 변화에 따른 3D-AFM 이미지이다. 이미지 양에 기판온도에 따라 변화되는 표면거칠기를 나타내었다. 여기서 주목할 부분은 AZO 박막의 표면거칠기가 산소분압에 따라 변화하였고 그중 300 °C에서 1.129 nm의 우수한 표면거칠기를 확인하였다. 또한 그림 2에서 FWHM의 값과 결정간격이 향상되는 것을 확인할 수 있었다. RMS 값이 증가하면서 전기-광학적 특성의 영향을 보인다[8]. 그러나 본 연구에서는 RMS 값과 AZO 박막의 특성은 이러한 이론과 양의 차이를 확인하였다. 그림 5는 300 °C의 기판온도에서 산소분압의 변화에 따라 성장 시킨 AZO 박막의 3D-AFM 이미지이다. 산소분압 1~10 mTorr에서 성장된 AZO 박막의 표면거칠기는 큰 변화를 보이지 않았지만, 50 mTorr에서는 확인이 증가한 것을 관찰할 수 있었다. 이것은 산소분압이 AZO 박막의 성장에 있어서 얼마나 중요한 변수인지 알 수 있었다. 산소분압 5 mTorr일 때 표면거칠기가 가장 우수한 것을 확인할 수 있었다.

그림 5 300 °C의 기판온도에서 산소분압의 변화에 따른 AZO 박막의 AFM 이미지로서 (a) 1 mTorr (b) 5 mTorr (c) 10 mTorr (d) 50 mTorr

Fig. 5 AFM images of the AZO thin films as a function of oxygen partial pressure with substrate temperature of 300 °C: (a) 1 mTorr (b) 5 mTorr (c) 10 mTorr (d) 50 mTorr
3.2 AZO 박막의 광학적 특성

그림 6은 AZO 박막의 광학 특성을 나타낸 것으로 가시광선 파장범위에서 둘로응을 측정하였다. 기판온도 100 ℃에서 성장된 AZO 박막을 제외하고 대부분 평균 90 % 이상의 높은 투과율을 보였다. 이 실험을 통하여 기판온도가 산소분압의 증가에 따라 투과도가 높아지는 것을 확인하였다.

3.3 AZO 박막의 전기적 특성

AZO 박막의 비저항, 캐리어 농도 및 온도 이동도와 같은 전기적 성질을 Van der Pauw 법을 적용한 Hall Effect Measurement System을 사용하여 실현에서 측정하였다. 그림 7에 각각의 조건변화에 의해 성장된 AZO 박막의 비저항, 캐리어 농도 및 온도 이동도를 나타내었다. 그림 7 (a)는 5 mTorr 산소분압에서 기판온도의 변화에 의해 성장된 AZO 박막의 전기적 특성을 나타낸다. AZO 박막의 비저항은 100 ℃에서 300 ℃까지 감소를 보여주고, 비저항의 감소는 결정 크기에 의한 결정면계산(Grain Boundary Scattering)의 영향으로 생각된다. 그러나 300 ℃에서 400 ℃로 온도가 증가할 때 비저항은 다시 증가한다. 그 이유는 기판온도의 증가와 함께 세혈류도 기판 표면에 남아있던 산소분자와 이온화된 산소분자와 산소 발산의 산산 배치로 생각된다[9-10]. 그림 7 (b)는 300 ℃의 기판온도에서 산소분압의 변화에 의해 성장된 AZO 박막의 전기적 특성을 나타낸다. 비저항은 1 mTorr에서 5 mTorr까지 최적 감소하다가 5 mTorr 이후로 계속 증가하는 것을 확인할 수 있었다. 이것은 AZO 박막의 산소공중의 변화 때문으로 생각된다. 산소분압의 감소는 박막의 산소공중을 증가시키는 자류전자의 증가로 인한 낮은 비저항을 나타내고, 산소분압의 증가는 산소공중을 감소시키는 자류전자수가 감소로 인한 높은 비저항을 나타낸다[10]. 비저항의 증가가 따라 온도이동도가 캐리어 농도가 감소하는 것을 확인할 수 있었다.

그림 6 AZO 박막의 가시광 영역에서의 광학적 둘로응을 나타낸 것으로 가시광선 파장범위에서 둘로응을 측정하였다. 기판온도 100 ℃에서 성장된 AZO 박막을 제외하고 대부분 평균 90 % 이상의 높은 투과율을 보았다. 이 실험을 통하여 기판온도가 산소분압의 증가에 따라 투과도가 높아지는 것을 확인하였다.

Fig. 6 Optical transmittance in visible region of the AZO thin films: (a) as a function of the substrate temperature with oxygen partial pressure of 5 mTorr (b) as a function of the oxygen partial pressure with substrate temperature of 300 ℃. The inset in (a) shows a photograph of the AZO film grown on Corning glass substrate (left) and that of the Corning glass substrate (right).
4. 결론

본 실험에서는 Nd:YAG-PLD법을 이용하여 AZO 박막을 성장시켰고, 성장시 기판온도와 산소분압의 변화에 따른 AZO 박막의 구조적, 전기-광학적 특성을 조사하였다. XRD 측정 결과 (002) 피크가 두껍지었고, c-축 방향성을 가진 육방정계 옥타이드(hexagonal wurtzite) 결정구조를 나타냈다. 또한 300℃의 기판온도와 5 mTorr의 산소분압에서 가장 우수한 전기적 특성이 나타났고, 4.653×10^{-5} Ω·cm, 캐리어 밀도: 9.252×10^{20} cm^{-3}, 홀 이동도: 31.33 cm²/V·s의 광학적 특성(가시광선 파장범위에서 90 % 이상의 두파도)을 나타내었다. 본 연구를 통해서 Nd:YAG-PLD 기술을 이용해 증착된 AZO 박막은 기존의 ITO를 대체할 수 있는 TCO로서 사용될 수 있음을 확인하였고, 전자소자로의 활용가능성이 충분히 있을 것으로 판단된다.

감사의 글
이 논문은 인하대학교의 교내연구비 지원에 의해서 연구되었습니다.

참고 문헌
저자 소개

노 임 준(魯林俊)
1979년 1월 3일생. 2006년 명지대학교 전기공학과 졸업(학사). 2006년~현재 인하대학교 전기공학과 석사과정
Tel) 032-860-7393, Fax) 032-863-5822
E-mail : oienhij@hotmail.com

신 백 균(申白均)
Tel) 032-860-7393, Fax) 032-863-5822
E-mail : shinsensor@inha.ac.kr

임 재 성(林載星)
Tel) 032-860-7393, Fax) 032-863-5822
E-mail : mr_jslim@hanmail.net

이 천(李天)
Tel) 032-860-7400, Fax) 032-863-5822
E-mail : chnlee@inha.ac.kr