저작자표시-동일조건변경허락 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.
- 이차적 저작물을 작성할 수 있습니다.
- 이 저작물을 영리 목적으로 이용할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

동일조건변경허락. 귀하가 이 저작물을 개작, 변형 또는 가공했을 경우 에는, 이 저작물과 동일한 이용허락조건하에서만 배포할 수 있습니다.

- 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건 을 명확하게 나타내어야 합니다.
- 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer []
Optical absorption and LASER heating properties in Pb-free glass with low firing temperature
저유점 무연계 유리의 광학적 특성에 따른 레이저 실링 특성

Optical absorption and LASER heating properties in Pb-free glass with low firing temperature

이 논문을 석사학위 논문으로 제출함
이 논문을 김종우의 석사학위논문으로 인정함

2012년 02월

주심 __________ 김상섭 __________

부심 __________ 김형순 __________

위원 __________ 정대용 __________
<목차>

국문요약

Abstract

1. 서 론

2. 이론적 배경 ... 3

 2.1 태양전지(Solar Cell) .. 3
 2.1.1 태양전지의 역사 .. 3
 2.1.2 태양전지의 기본원리 .. 3
 2.1.3 태양전지의 종류 .. 5
 2.2 염료감응 태양전지(Dye-sensitized Solar Cells) 8
 2.2.1 염료감응 태양전지의 역사 10
 2.2.2 염료감응 태양전지의 구조와 구성 물질 11
 2.2.2.1 반도체 .. 12
 2.2.2.2 염료 .. 15
 2.2.2.3 전해질 .. 16
 2.2.2.4 상대전극 ... 17
 2.2.2.5 실링재 .. 18
 2.2.2.6 투명전도성기판 .. 19
2.3 Laser sealing 기술

<table>
<thead>
<tr>
<th>2.3.1 Laser의 종류와 특징</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.1.1 Fiber Laser</td>
<td>21</td>
</tr>
<tr>
<td>2.3.1.2 CO₂ laser</td>
<td>22</td>
</tr>
<tr>
<td>2.3.1.3 Nd:YAG Laser</td>
<td>23</td>
</tr>
<tr>
<td>2.3.1.4 반도체 다이오드 laser</td>
<td>24</td>
</tr>
</tbody>
</table>

2.4 레이저 실링

| 2.4.1 Laser Sealing을 통한 유리의 접합 | 26 |
| 2.4.2 프릿을 이용한 실링 메커니즘 | 28 |

2.5 레이저 실링재

| 2.5.1 레이저 실링용 글라스 프릿 | 33 |
| 2.5.2 무연계 (Pb-free) 조성의 필요성 | 35 |

3. 실험 방법

3.1 유리의 조성 설계	37
3.2 유리의 물성 평가	39
3.2.1 열적 특성 분석	39
3.2.1 Emissivity	39
3.2.3 광학적 특성	39
3.3 레이저 발열 특성 평가	40
3.4 유리의 구조 분석	41
4. 결과 및 고찰 ..42
 4.1 실링재용 모 유리의 열물성 ...42
 4.2 레이저 실링 후 미세구조 ...44
 4.3 레이저 실링재의 물성 ...48
 4.4 광학적 특성 ...50
 4.5 레이저에 의한 유리의 발열 특성 ..54
 4.6 유리의 구조 분석 ..56

5. 결 론 ..59

6. 참고 문헌 ..60
List of Tables

Table 1. The Classification of Solar Cells depending on Material
Table 2. The Classification of Solar Cells depending on generation
Table 3. Glass composition of Bi$_2$O$_3$-ZnO-B$_2$O$_3$-CuO (in mole%)
Table 4. Glass transition point, emissivity and chromaticity coordinates of bismate glasses with different CuO content
List of Figures

Figure 1. Principle of photovoltaic device
Figure 2. Structure of Dye-sensitized Solar Cell
Figure 3. Component of Dye-sensitized Solar Cell
Figure 4. Applications of laser heating
Figure 5. A schematic diagram of DSSCs sealed by laser sealing with glass frit
Figure 6. A schematic graph showing the change of 2 dimensional area of pelet consist of low melting glass frit
Figure 7. The schematic diagram of sintering stages for the low melting glass frit
Figure 8. A schematic diagram of commercial process for the production of paste
Figure 9. A schematic diagram of process for the production of frit
Figure 10. Thermal properties such as glass softening point, dilatometric softening point and glass transition temperature of bismate glasses with different Bi$_2$O$_3$ content
Figure 11. SEM images of sealant on the glass substrate after laser irradiation
Figure 12. Temperature profile on the surface of sealant during laser irradiation
Figure 13. Transmittance (a) and Absorption coefficient (b) of CuO added bismate glasses with different CuO content
Figure 14. Absorption coefficient of CuO added bismate glasses with different CuO content at 1064nm wavelength which corresponds to the fiber laser
Figure 15. Maximum temperature on CuO added bismate glasses with
different CuO content and laser power

Figure 16. XPS analysis of Cu ion within CuO added bismate glasses for laser sealing. (a) CuO0.3mol% (b) CuO0.9mol% (c) CuO1.5mol% (d) CuO3mol% (e) CuO4.4mol%
국문요약

염료감응 태양전지(Dye-sensitized Solar Cell, DSSC)는 유기염료와 나노기술을 이용하여 높은 에너지 효율을 갖고, 기존의 실리콘 태양전지에 비해 낮은 생산단가와 친환경 적이고 투명하게 제작 가능한 장점을 가지고 있기 때문에 차세대 태양전지로서 활발한 연구가 진행되고 있다. 하지만 액체 전해질을 이용한 염료감응 태양전지는 고분자 실링재(surlyn)의 낮은 안정성으로 인해 전해질 누수, 봉착 불량, 짧은 수명 등의 단점을 가지고 있다. 이러한 단점을 극복하기 위해 액체 전해질을 고체 전해질로 대체하기 위한 노력들이 활발히 진행되고 있다. 이러한 노력에도 불구하고 고체 전해질을 사용한 염료감응태양전지는 전해질의 낮은 이온 활동도로 인해 액체전해질보다 낮은 에너지 변환 효율을 나타내고 있다.

액체전해질을 사용한 염료감응태양전지의 높은 효율을 유지하고 안정성을 또한 향상시키기 위해 저 융점 유리 프릿을 실링재로 사용하기 위해 많은 시도들이 진행되고 있다. 하지만 저 융점 유리 프릿의 열처리 온도가 높아 태양전지의 실링 공정 시 많은 양의 전해질이 기화되어 사라진다는 점과 저융점 유리프릿에 납 성분의 함량을 극도로 줄여야 한다는 점이 가장 큰 문제점이라 할 수 있다. 이러한 문제점들을 해결하기 위해, 국부적인 면적에 열을 가할 수 있는 레이저 실링 기술 개발과 저 융점 무연계(Pb-free) 유리 조성 개발이 필수적이다.

이러한 레이저실링재의 조건을 충족시키기 위해 비스무스(Bi)계 유리의 조성을 설계 하여 유리의 열, 기계적, 화학적 특성을 분석 하였다. 또한 실링재의 흡광도를 향상시키기 위해 레이저의 빛에너지를 예열에 흡수할 수 있는 CuO를 가한재로 사용 하였다. CuO를 광 흡수도가 낮은 비스무스계 유리에 첨가하여 광학적 특성을 분석한 결과, CuO를 첨가함에 따라 유리의 투과율은 낮아지고, 광 흡수율을 높아지는 결과를 얻을 수 있었다. 또한
한, 0.9mol%의 CuO를 첨가한 유리에 레이저를 조사 하였을 때 연화점 이상의 높은 온도를 얻을 수 있었고, 0.3mol% 이하의 CuO를 첨가 하였을 때는 높은 레이저 파워에서도 유리에 발열이 일어나지 않는 것을 확인 하였다. 이러한 결과를 토대로 레이저 실링재에 요구되는 광학적 특성을 정량적으로 제시 할 수 있었다. CuO 첨가에 따른 광흡수도 변화와 레이저 조사 시 광흡수도 변화의 원인을 분석하기 위해 유리 내에 존재하는 Cu$^{2+}$이온의 영향을 분석 하였다. XPS 분석 결과, 0.9mol% 이상에서 Cu$^{2+}$이온이 검출되기 시작 하였고 이는 0.9mol% 이상의 CuO를 첨가 하였을 때 레이저 조사 시 온도가 급격히 상승한 결과와 일치한다.

본 연구에서는 매트릭스로 비스무스 (Bi)계 유리를 사용 하고 CuO를 첨가하여 높은 레이저 흡수도를 갖는 레이저 실링에 적합한 유리의 조성과 그 기초 물성 값을 제공하고자 한다.

Key Words: 저용점 프릿, 레이저 실링, 광학적 특성, 염료감응태양전지
Abstract

Laser heating properties with optical absorption in Low Firing Temperature Pb-Free Glasses

Glass is widely used for many applications, such as, widows, bottles, eyewear and electronic devices due to its thermal, mechanical, optical, chemical and physical properties. A number of papers have been published on various aspects of the optical, thermal and mechanical property of glass and glass composites. The properties of low melting glasses are investigated and discussed with electronic applications. However, the use of low melting glass containing lead oxide became one of the most significant issues and the use of lead oxide must be reduced in the electronic devices due to the RoHS (Restriction of Hazardous Substances) and WEEE (Waste Electrical and Electronic Equipment) specifications.

Environmentally friendly energy conversion devices using renewable energy sources, such as solar cells and fuel cells, have attracted increasing attention in recent decades due to expected fossil fuel depeletion and environmentallyh pollution. Among them, dye-sensitized solar cell (DSSC) based on the photoelectrochemical principle between a photo-sensitized anode and an electrolyte has been considered as a promising renewable electricity generator to be commercialized because of simple cell structures, low cost and high performance.

A number of hermetic sealing techniques with glass frit have been developed for electronic devices, typically, requiring the whole device to be heated to a high temperature. Sealing technologies with glass frit attain an
air tight seal which protects the inside of devices from gases and moisture out of the package, hence, failure of the device due to water vapor could be avoided. Furthermore, glass frit has very stable chemical, thermal and mechanical properties. However, this conventional heating process with oven causes significant damages to the electrolyte and dyes in DSSCs. Therefore, alternative laser sealing techniques which could heat just target area have been required. Low Tg glass frit with laser sealing process could achieve both of the durability and hermetical condition to the DSSCs.

In this study, We added CuO in low melting bismate glass to enhance their light absorption performance, and create heat on the glass using Cu$^{2+}$ irradiated by fiber laser. Optical properties of BBZ glasses were measured using a UV-visible spectrometer in the wavelength range of 340-1100 nm. We studied the temperature on the glass surface irradiated by the fiber laser using infrared camera with adding CuO. We determined the states of Cu atoms in the bismate glasses using X-ray photoelectron spectroscopy (XPS) to clarify the relationship between optical absorption and laser heating phenomenon. The optical absorption of the BBZ glass increased with the incorporation of CuO in the whole wavelength from 380 to 1100 nm. The temperature around the irradiating laser beam axis on the bismate glass rapidly increased with 0.9mol % CuO addition due to the Cu$^{2+}$ formation. It is confirmed that the absorbance of bulk glass can be controlled by CuO addition.

Key Words: Glass Frit, Laser sealing, Optical Properties, Dye-sensitized solar cells
지구 온난화로 인한 생태계 파괴의 원인이 되는 온실가스의 배출을 줄이기 위해 신재생에너지의 개발이 요구되고 있다. 또한 여러 전자 전기 소재에 사용되고 있는 저융점 유리의 납 성분이 환경오염문제로 인해 유해물질 제한지침 (RoHS, Restriction of Hazardous Substances)과 폐기전기전자제품 처리지침 (WEEE, Waste Electrical and Electronic Equipment)에 의해 그 사용량이 규제되고 있다. 이러한 문제들을 해결하기 위해 새로운 에너지원과 환경에 무해한 재료들의 개발이 활발히 진행되고 있다.

먼저 지구 온난화를 최소화하기 위해 신재생 에너지에 대한 연구가 활발히 진행 중이다. 특히, 염료감응 태양전지(Dye-sensitized Solar Cell, DSSC)는 유기염료와 나노기술을 이용하여 높은 에너지 효율을 갖고, 기존의 실리콘 태양전지에 비해 낮은 생산단가와 친환경적이고 투명하게 제작 가능한 장점을 가지고 있기 때문에 차세대 태양전지로서 활발한 연구가 진행되고 있다 [1-4]. 하지만 액체 전해질을 이용한 염료감응 태양전지는 고분자 실링재(surlyn)의 낮은 안정성으로 인해 전해질 누수, 봉착 불량, 짧은 수명 등의 단점을 가지고 있다. 이러한 단점을 극복하기 위해 액체 전해질을 고체 전해질로 대체하기 위한 노력들이 활발히 진행되고 있다. 이러한 노력에도 불구하고 고체 전해질을 사용한 염료감응 태양전지는 전해질의 낮은 이온 활동도로 인해 액체전해전보다 낮은 에너지 변환 효율을 나타내고 있다.

이러한 문제점들을 해결하기 위해 액체전해전을 사용하여 높은 에너지 변환 효율을 유지하고, 염료감응 태양전지의 안정성을 향상시키기 위해 저융점 프릿을 실링재로 응용하기 위한 노력들이 시도되고 있다.

유리의 레이저 접합은 최근 산업계의 다양한 분야에서 유리 기판들을 적층하고 부착하는 기술을 활용하고, 특히 디스플레이 기기 및 염료감응 태양전지 소자에 활용되기 시작하였다. Frit glass와 같은 무기 실링제를 이용한 유리의 접합공정은 기존의 금속 솔더를 이용한 공정에 비해 오염 및 부식에 의한
영향이 적으며 에폭시를 이용한 접합공정에 비해서 밀봉성능이 우수한 장점을 보유하고 있다. 모 유리와 열팽창계수가 비슷해 접합 시 발생하는 응력문제를 해결할 수 있어 높은 밀봉성능이 요구되는 유리의 접합공정에 다양하게 적용 가능하다. 또한 공정 온도가 400~500℃가 되는 전기오븐의 사용은 태양전지, OLED, 광통신용 광도파로 등 유기소재가 포함된 소자의 패키징 및 광학소자의 적용에 불가능한 단점이 있기 때문에 레이저를 이용한 frit의 국부적인 가열법이 최근 개발 및 적용되기 시작하였다.
2. 이론배경

2.1 태양전지(Solar Cell)

2.1.1 태양전지의 역사

광전효과는 1839년 Becquerel이 전해용액 속에 놓인 전극에 태양광을 비출 때 전기가 발생되는 현상을 발견함으로써 처음 확인되었다 [3]. 이를 이용한 실용적인 태양전지는 1954년 벨전화연구소의 연구진들이 p-n 접합(p-n junction)을 이용하는 효율 6%의 전지를 만들며 시작되었다 [5]. 이 후 1970년대의 에너지파동을 겪으면서 값싸고, 신뢰성 있는 태양전지의 개발이 본격적으로 이루 어지게 되었다.

2.1.2 태양전지의 기본 원리

반도체에서 빛에너지는 밴드 갭 에너지(band gap energy)보다 클 때, 가전 자대(valence band)에 있는 전자는 여기(excitation)되어 전도대로 옮겨가면서, 전도대의 전자와 가전도대의 정공 캐리어(carrier)쌍이 만들어진다. 이 때 기전력이 발생하기 위해서는 전자-정공 쌍(electron-hole pair: EHP)이 분리되어 전자와 정공의 흐름을 만들어야한다. 이렇게 되기 위해서는 여기된 전도대의 전자가 가전도대의 정공과 결합할 때까지 이동하는 거리(carrier diffusional length)보다 더 짧은 거리에서 carrier의 집적이 일어나서 전도가 일어나는 작용이 있어야 한다 [6].

원활한 EHP의 분리가 일어나기 위해서는 외부 전자기장을 가하거나 내부에 자체적으로 전자기장을 형성되는 구조가 필요하다. 이러한 구조 중의 하나가 p-n junction이다. p-n junction은 Fig. 1에서 보는 바와 같이 n-type과 p-type 두 형의 반도체를 접합한 것으로, 접합부에서 농도차에서 의해 전자는 n-type 반도체로, 정공은 p-type 반도체로 이동함으로 전자기장이 형성된다.
Figure 1. Principle of photovoltaic device [7].
2.1.3 태양전지의 종류

태양전지는 재료, 형태, 원리 등에 여러 가지로 분류된다. 첫째, 재료에 따라 실리콘계, 화합물계 유기물계 등으로 구분되고, 형태에 따라 결정질 벌크형, 박막형, 집중형으로 구분된다. 원리에 따라 크게 p-n 접합으로 구성된 반도체 집합형, 염료감응형 태양전지로 대표되는 광전기화학형으로 구분 된다 [8].

현재 시장 상황 및 기술개발 상황을 고려하면 1세대인 결정질 실리콘 태양 전지, 2세대인 박막형 태양전지, 초고효율 태양전지, 3세대인 차세대 태양전지로 구분 된다 [7].
Table 1. The Classification of Solar Cells depending on Material [8].

<table>
<thead>
<tr>
<th>Material</th>
<th>Type</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganic</td>
<td>Crystalline</td>
<td>Single: High purity, low defect, high cost</td>
</tr>
<tr>
<td>Silicon</td>
<td>Poly: Low cost process, low purity</td>
<td></td>
</tr>
<tr>
<td>Thin Film</td>
<td>The initial thin film, low cost</td>
<td></td>
</tr>
<tr>
<td>Non-Silicon</td>
<td>Crystalline</td>
<td>Highest efficiency, for space, high cost</td>
</tr>
<tr>
<td>Thin Film</td>
<td>Hetero junction, easy to compound substances</td>
<td></td>
</tr>
<tr>
<td>Tendem</td>
<td>Thin Film</td>
<td>High efficiency, for an experiment in a lab</td>
</tr>
<tr>
<td>Organic</td>
<td>Solution</td>
<td>Transparent cell, low cost material, eco¬friendly</td>
</tr>
<tr>
<td>Dye</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic</td>
<td>Thin Film</td>
<td>Flexible, various material, low cost</td>
</tr>
</tbody>
</table>
Table 2. The Classification of Solar Cells depending on generation [9].

<table>
<thead>
<tr>
<th>Type</th>
<th>Solar Cell</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st generation Crystalline</td>
<td>Si–Solar Cell</td>
<td>■ Major types: mono c–Si, poly c–Si, Ribbon c–Si</td>
</tr>
<tr>
<td>generation</td>
<td></td>
<td>■ Cell efficiency: average / standard</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ Production cost: average / standard</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ Development stage: mature</td>
</tr>
<tr>
<td>2nd generation Thin Film</td>
<td>Solar Cell</td>
<td>■ Major types: amorphos Si(a–Si), hybrid Si(micro/micromorph Si), CIS,</td>
</tr>
<tr>
<td>generation</td>
<td></td>
<td>CIG, CdTe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ Cell efficiency: low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ Production cost: low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ Development stage: Very early > mature</td>
</tr>
<tr>
<td>3rd generation Non Standard</td>
<td>c–Si technologies</td>
<td>■ Major types: various individual concepts(HIT, Saturn, PERL, point</td>
</tr>
<tr>
<td>generation</td>
<td></td>
<td>contact, etc.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ Cell efficiency: high</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ Production cost: high</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ Development stage: early > mature</td>
</tr>
<tr>
<td>3rd generation Concentration</td>
<td>technologies</td>
<td>■ Major types: II junction(tandem) cells, III–V junction cells</td>
</tr>
<tr>
<td>generation</td>
<td></td>
<td>■ Cell efficiency: very high</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ Production cost: very high</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ Development stage: very early</td>
</tr>
<tr>
<td>3rd generation Emerging PV</td>
<td>cell technologies</td>
<td>■ Major types: dye cells, organic cells</td>
</tr>
<tr>
<td>generation</td>
<td></td>
<td>■ Cell efficiency: very low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ Production cost: high</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ Development stage: embryonic</td>
</tr>
</tbody>
</table>
2.2 염료감응 태양전지(Dye-sensitized Solar Cells)

염료감응태양전지는 Fig. 2와 같이 TiO$_2$를 주성분으로 하는 반도체 나노입
자, 태양광 흡수용 염료분자, 전해질, 투명전극 등으로 구성되어 있는, 식물이
햇빛을 받아 엽록소와 수액을 통해 녹말을 만들어 내는 광합성의 원리를 응용
한 전지이다 [10]. 이 전지가 기존의 태양전지와 다른 근본적인 차이점은, 기존
의 태양전지에서 태양에너지의 흡수과정과 EHP가 분리되어 전기의 흐름을 만
드는 과정이 반도체 내에서 동시에 일어나는 것에 비해, 태양에너지의 흡수과정
과 전하이동 과정이 분리되어 태양에너지 흡수는 염료가 담당하고, 전하의 이동
Figure 2. Structure of Dye-sensitized Solar Cell [12].
2.2.1 염료감응 태양전지의 역사

염료에 의해 광전현상이 발생하는 것을 발표한 최초의 보고서는 1887년 6월 비엔나대학의 Moser 박사에 의해 염료용액 속에 요오드화은 및 브롬화은을 담구는 실험에 대한 것이다. 이 결과는 즉시 사진연구가들에 의해 받아들여져서 칼라사진의 개발에 활용되었다. 반도체를 이용한 최초의 실험이 1960년에 염료용액 속에 담긴 단결정 반도체를 이용하여 행하여졌다. 이 연구를 통하여 전극 표면에 흡착된 분자들이 단분자층을 이루고 있을 때 효율이 좋고 분자층이 두께워질수록 전자의 이동이 차단되어 빛에너지의 흡수가 원활하지 않다는 것이 밝혀졌다. 그러나 이러한 방식으로 효율은 0.5%에 불과하였다 [13].

효율의 큰 상승은 1976년 Tshubomura 연구팀이 Nature지에 기고한 ‘높은 기공도를 지닌 다결정 ZnO분말’을 사용한 연구에 의해 이루어졌다. 이러한 방법으로 전극의 표면적을 증가시킬 수 있었고, 이에 따라 효율은 1.5%까지 증가하였다. 이들은 또한 I/III (iodide/triiodide) 산화-환원 전달 시스템이 효율을 높이는 데 크게 유리하다는 것을 발견하였다 [14].

2.2.2 염료감응 태양전지의 구조 및 구성 물질

염료감응태양전지의 구성요소는 Fig. 3와 같이 반도체, 염료, 전해질, 상대 전극, 실링재, 투명전도성기판으로 나눌 수 있다.

Figure 3. Component of Dye-sensitized Solar Cell [16].
2.2.2.1 Photo-electrode

염료감응태양전지에서는 밴드 갭 에너지(Band-gap Energy)가 큰 nano-crystalline반도체를 이용한다. 그 이유는 큰 band 에너지, nano 그리고 crystalline으로 나누어서 생각해 볼 수 있다. 염료감응태양전지에 사용하는 반도체에서 가장 중요한 것은 전도대의 에너지 준위가 염료의 LUMO에 대해 가지는 상대적 위치이다. 그래서 띠 간격이 중요하지 않을 수도 있으나 큰 띠 간격은 염료감응태양전지의 안정성을 제공해준다. 예전에 염료를 사용하지 않고, 고체-액체간의 접촉에서 생기는 띠 굽힘을 이용해서 전류를 발생시키던 광화학전지에서는 Si, GaAs, CdTe, CdS 등 띠 간격 에너지가 1.12 ~ 2.40eV 정도로 가시광 영역의 빛을 효과적으로 흡수할 수 있는 물질들이 사용되었다. 그러나 띠 간격 에너지가 작은 물질들은 광 부식으로 인한 수명단축의 문제점이 있다. 반면에 TiO\textsubscript{2}와 같이 띠 간격 에너지가 큰 물질은 광 부식에서 안정하나 흡수파장이 차외전 영역에 있기 때문에 흡수할 수 있는 태양광이 매우 적다는 단점이 있다. 그러나 광화학전지에서 염료를 사용하게 되면 큰 띠 간격은 아주 큰 장점이 있다. 태양광의 흡수는 염료가 담당해주기 때문에 큰 띠 간격은 아무런 문제가 되지 않으며, 큰 띠 간격이 광화학전지의 안정성을 제공해 준다. 그래서 염료감응태양전지에서는 띠 간격이 크면서도 전도대의 에너지 준위가 염료의 LUMO보다 낮은 반도체를 이용한다.

현재 주목받고 있는 반도체 물질은 TiO\textsubscript{2}, SnO\textsubscript{2}, ZnO, Nb\textsubscript{2}O\textsubscript{3} 등의 물질이다. 이중에서도 TiO\textsubscript{2}는 비교적 값이 싸고 Ru(II)계열의 염료와 함께 사용했을 때 10%가 넘는 효율을 달성했기 때문에 가장 주목을 받고 있다. TiO\textsubscript{2} 외의 물질은 효율이 7%내외로 효율이 떨어지는 편이다. nano 반도체를 이용하는 이유는 비교면적, 양자효과 때문이다. nano라는 말이 뜻하는 것처럼 입자크기라 작으면 비교면적이 증가하여 많은 양의 염료를 흡착시킬 수 있다. 그리고 양자효과로 인해 bulk 상태의 물질보다 더 큰 띠 간격을 가지게 되고 그로 인해 전도대의 에너지 준위가 높아져 높은 전압을 보여준다. crystalline을 이용하는 이유는 우수한 전기적 성질 때문이다. 결정에서 우수한 전기적 성질이 나타나는 것.
은 원자의 규칙적인 배열과 일정한 전위로 인한 것이다. 원자의 배열이 규칙적
이면 전자가 이동하는 과정에서 원자와 부딪히지 않고 먼 거리를 이동할 수 있
다. 또한 전위가 일정하면 에너지 언덕과 우물이 나타나지 않으므로 효과적으로
전자가 이동할 수 있다.

TiO₂는 세 가지 결정구조가 알려져 있다 [17-20]. 저온에서 안정한 anatase
와 brookite, 고온에서 안정한 rutile이 그것이다. anatase와 brookite는 700°C이
상에서 rutile로의 상전이가 일어난다. 이 중에서 anatase는 제조가 쉽고 광촉매
로서의 활성이 커서 가장 널리 쓰이고 있다.

분야를 막론하고 현재 상업용으로 가장 널리 판매되는 TiO₂는 Degussa의
P-25 TiO₂ 분말이다. P-25는 anatase 결정 80% rutile 결정 20% 정도가 섞인 분말
이다. 그리고 비교적 수치만 BET가 55m²/g 정도이고 불투명하다. P-25는 bulk
상태의 TiO₂보다 훨씬 큰 비교면적을 가지기 때문에 염료감응태양전지의
고 효율화를 이루게 하는 출발점이 되기도 하였으나 현재 만들어지고 있는
TiO₂들에 비해 비교면적이 작고 불투명하다. 그래서 P-25를 이용해서 만든 염료
감응태양전지는 현재의 고효율 염료감응태양전지보다는 성능이 크게 떨어진다.
그러나 P-25는 아직도 염료감응태양전지의 비교를 위한 기준 물질로 널리 쓰이
고 있다.

현재의 염료감응태양전지에서는 산성 조건으로 200°C 이상에서 autoclave
하는 sol-gel법으로 제조한 TiO₂를 가장 널리 이용하고 있다. 이 방법으로 제조
한 TiO₂는 BET가 140m²/g이 넘고 anatase 결정의 분율이 높고 투명하기 때문에
염료감응태양전지의 효율이 10%를 넘는 데에 크게 기여하고 있다. 그러나 이
방법으로 제조한 TiO₂를 이용해서 박막을 형성할 때, 여전히 소결과정을 통해서
 입자들을 연결하는 방식이 사용되기 때문에 입자간의 계면저항으로 인한 손실
도 여전하다.

그래서 최근에는 block copolymer를 이용해서 TCO에 수직한 방향으로
TiO₂내부의 통로를 형성하는 방식이 주목을 받고 있다. 연결된 TiO₂ 입자 내부
의 기공들이 전하질의 통로 역할을 하도록 하는 것이다. TCO 위에 직접 TiO₂
내부의 통로를 형성하면 입자간의 계면저항이 줄어 고효율을 기대할 수 있다. 그러나 전극막의 두께가 1μm를 넘지 못하는 이유로 염료의 흡착량에 한계가 있다. 그래서 아직까지 고효율을 달성하지 못하고 있다.

염료감응태양전지의 효율을 급속히 올릴 수 있게 된 주요 원인중의 하나는 반도체 표면적의 증가이다. 염료분자는 단분자층일 때 효율이 높으므로, 태양광의 흡수량은 염료분자가 코팅된 반도체의 표면적이 넓을수록 크게 된다. 이 때문에 TiO₂의 입자가 작고, 기공도가 높을수록 전지의 효율이 향상되는데, 보통 15-30nm의 입경을 지닌 것이 주로 이용된다.
2.2.2 염료

염료감응태양전지에 쓰이고 있는 염료는 루테늄계 유기금속화합물, 유기화합물, 그리고 InP, CdSe 등의 양자 점(quantum dot) 무기화합물이 알려져 있다. 현재는 Ru(II) polypyridyl 복합체들 중에서 N3 염료, cis-bis(isothiocyanato) bis(2,2′-bipyridyl-4,4′-dicarboxylato)-ruthenium(II)와 그 치환체인 N719가 가장 높은 효율을 보이고 있다.(N3 염료는 수소가 4개 있는데 이중 2개를 tetrabutyl ammonium 이온으로 치환시킨 것을 N719라고 한다.) 1993년 N3 염료를 발견한 이후 수백 개의 염료들을 합성해서 평가해 보았으나 거의 모두 성능이 좋지 못했고 Black Dye로 알려진 N749 염료가 좋은 성능을 보여주었을 뿐이다. N3 염료에서 수소를 상대적으로 크기 큰 다른 양이온으로 치환하는데 양이온이 많을수록 광 전압과 fill factor는 향상되지만 광전류가 저하되는 경향이 있다. 유기화합물 염료는 5% 이상의 효율을 보여주며 가능성을 보였지만 빛과 열에 약한 것이 문제점이고 양자 점 염료 역시 광부식의 문제점이 있다.

현재 가장 널리 사용되는 염료는 루테늄 폴리피리딜(ruthenium polypridyl) 복합체이다[17]. Ru은 백금족에 속하는 원소로써 많은 유기금속복합화합물을 만들 수 있는 원소이다. 이러한 ruthenium을 지닌 광 감응 염료의 개발은 약 20년간에 걸쳐 이루어졌는데, 이 동안 900개 이상의 염료들을 태양전지용으로 사행하여 불과 수 개만이 만족할 만한 특성을 보여주었다. 그러나 지금까지 아직도 왜 유사한 구조를 지닌 수많은 화합물 중에서 불과 소수만이 적합하고 나머지는 부적합한지를 규명하지 못하고 있다. 이러한 구조-물성의 상관관계 규명은 향후 우수한 태양전지의 개발의 열쇠 중의 하나이다. 현재 주로 사용되고 있는 광 감응 염료에는 RuL₃, RuL₂[Ru(bpy)₂(CN)]₂, RuL₂(NCS)₂, RuL’(NCS)₃ (L=2,2-dcbpy, L’=tc-terpy)등이 있다 [18].
2.2.2.3 전해질

현재의 염료감응태양전지들은 I/أ 전화-환원중을 nitrile류, ethylene carbonate 등의 용매 또는 이들의 혼합용매에 녹여서 사용하고 있다. I-이온의 source로는 LiI, NaI, imidazolium iodide 등이 있고 I2이온은 I2를 용매에 녹여 생성시킨다. I/أ 쌍은 좋은 안정성과 가역성 뿐만 아니라 낮은 가시광흡수와 높은 확산계수의 장점이 있지만 산화-환원력이 최근의 염료감응태양전지에 적합하지 못한다는 단점이 있다. 적합하지 못한 산화-환원력으로 인한 전압손실은 N3 염료에서 0.4V, Black 염료에서 0.2V이다. 이 감소를 피한다면 N3 염료를 사용했을 때 효율이 10%에서 17%로 올라갈 것이다.

한편, 유기용매를 대체하기 위한 노력도 많이 이루어지고 있다. 지금의 유기용매들은 화학성이 커서 염료감응태양전지의 상용화에 가장 큰 문제점이 되고 있다. 따라서 고분자 gel이나 홀 전도체를 이용해서 매질의 고체화를 시도하고 있다. 그러나 매질의 고체화가 이루어지면 누액의 염려는 없지만 산화-환원종의 움직임이 둔화된다는 단점도 함께 가지고 있다. 고분자 전해질의 소재로 연구된 물질은 polyacrylonitrile (PAN)계, poly (vinylidene fluoride-co-hexafluoropropylene) (PVdF)계, 아크릴-이온성 액체조합, pyridine계, poly ethylene oxide(PEO)계 등이 있는데 PEO계의 전해질을 사용했을 때 1.6% 이하의 낮은 효율을 보여 주었다. 한편, 최근에 연구된 유무기 복합 gel을 이용한 염료감응태양전지들은 7% 이상의 높은 효율을 보여주고 있다. 홀 전도체는 CuI, CuSCN과 같은 무기소재나 polypyrrole과 같은 유기소재를 사용하며 전해질을 사용하지 않기 때문에 고체화가 더욱 용이하다. 그래서 더욱 높은 홀 전도도를 이루기 위한 연구가 진행되고 있다.
2.2.2.4 상대전극

상대전극은 외부전극을 통하여 전자를 받고 I이온에 전자를 전해주는 역할을 하며, redox 반응하는 촉매가 되어야한다 [19]. 또한 전해질과 반응하여 열화되지 않아야 하며, 높은 전기전도도를 지니고 있어야 한다. 이러한 상대 전극의 종류로는 Pt, 탄소, CNT, Ag 등이 있으며, 그 중에서도 대표적인 전기화학 촉매로 Pt가 널리 사용되고 있다. 상대전극으로 사용되는 Pt는 가격이 고가이고 촉매로의 특성이이나 전기 전도도가 높지만 물량 확보의 어려움이 있다. 염료감응태양전지에 대한 연구에 대한 연구에서 산화물 다공질 전극이나 염료 및 전해질 연구에 비해 상대 전극에 대한 연구는 상대적으로 적은 편이다. 그러나 이들 연구를 통한 효율 향상은 한계 시점에 이르렀으며, 이에 따라 태양전지의 전체 효율 향상의 측면에서 고가의 Pt를 대체하고 촉매 특성이 우수한 새로운 상대전극에 대한 연구가 필요한 시점이다 [19-23].
2.2.2.5 실링재

염료감응태양전지의 실링은 cell에 사용된 높은 휘발성과 부식성을 가지는 액체 iodide계 전해질로 인하여 문제가 시급하다. 이 문제는 염료감응태양전지의 장기안정성과 큰 관련이 있기 때문에 꼭 해결해야 할 기술적 과제이다. 실링재는 아래와 같은 특성을 갖고 있어야한다 [20-24].

1) 산소, 물, 증기를 침투시키지 않고 전해질 성분의 누수가 없어야 한다.
2) 염료감응태양전지의 전해질 및 다른 구성 성분과 반응을 하지 않아야 한다.
3) 유리 기판 및 투명전극과의 부착성이 좋아야 한다.

현재 epoxy glue (e.g. Kohle et al. 1997, Grünwald & Tributsch 1997), water glass (sodium silicate) (e.g. Kay & Grätzel 1996), 듀퐁의 ionomer resin Surlyn® (grade 1702) (e.g. Kohle et al. 1997, Deb et al. 1998), polymer foil이 접합된aluminum foil (Kay & Grätzel 1996, Burnside et al. 2000), a vacuum sealant Torr Seal® (e.g. Krüger et al. 2001)이 실링재로서 사용되고 있다.

2.2.2.6 투명전도성 기판

2.3 Laser sealing 기술

디스플레이 제조 공정뿐만 아니라 다양한 산업 분야에 있어 레이저 응용 기술은 전 공정, 후 공정에 두루 적용되고 있다. 특히 디스플레이 기기 및 영료 감응형 태양전지 소자에 활용되기 시작하였으나 이들 소자에 있어서 유기물 기반의 재료 사용량이 점차 늘어남에 따라 새로운 유리의 접합에 관한 연구가 진행되고 있으며 특히 Frit을 이용한 유리의 접합 공정이 연구되고 있다 [30-33].

Figure 4. Applications of laser heating [30].
2.3.1 Laser의 종류와 특징

LASER (Light Amplification by Stimulated Emission of Radiation)란, 외부의 자극에 의해 매질로부터 빛을 방출하게 하고, 공진기에 의해 증폭된 빛을 말한다. 펌핑 소스는 매질에 빛을 공급하고, 외부 자극에 의해 매질로부터 유도 방출된 빛은 공진기의 반사 미러에 의해 증폭 된다. 레이저는 매질, 공진기, 펌핑 소스로 구성되고, 매질의 종류에 따라 레이저는 분류 된다.

2.3.1.1 Fiber Laser

Fiber Laser는 펌프 다이오드 레이저(Pump Diode Laser), 이터븀 엑티브 파이버(Ytterbium Active Fiber), FBG(Fiber Bragg Grating)로 구성되어 있다. 펌프 다이오드 레이저는 파이버의 클래드를 통해 전반사하면서 파이버 코어에 흡수된다. 흡수된 빔은 빛을 방출하고, 거울 역할을 하는 FBG에 의해 빔이 증폭 된다. 파이버 레이저는 빔의 펌핑에서부터 레이저 출력의 모든 과정이 파이버의 내부에서 이루어지기 때문에 외부 충격에 강하고 광학계의 정밀이 필요 없는 것이 특징이다.

파이버 레이저는 펌핑 소스로서 싱글 에미터 다이오드 레이저/single emiter diode를 사용한다. IPG 다이오드는 광통신에 기초하고, 다양한 조건의 가속 테스트에 의해 10만 시간 이상의 수명을 보장한다. 각 고장에 대한 수리가 용이하고, 여러 개의 다이오드를 모아서 만든 다이오드 바를 사용하는 것과 달리 하나의 다이오드가 고장 나더라도 실제 사용에는 영향을 주지 않는다.

파이버 레이저는 소형의 모듈 개념으로 설계되어, 각 모듈을 직렬로 연결함으로서 파워를 증설 하는 구조이다. 모든 파이버로 구성되어 있기 때문에 열에 강하고, 먼지의 영향이 없으며, 정밀이 필요 없다. 다양한 출력을 갖는 레이저 모듈이 생산되고 있다.
2.3.1.2 CO₂ laser

CO₂ Laser는 CO₂ 분자의 진동준위 사이에서 10.6um의 적외선이 발전되며 효율이 높아서 용이하게 고출력을 얻을 수 있다. 이런 이점으로 강한 열 작용을 이용한 금속 또는 피뢰의 용접 절단 등 산업에 이용되고 있다. 약 1m 길이의 유리(pyrex)관에 CO₂, He, N₂를 일정비로 흘리면서 10kV 정도의 직류전압을 가하면 블로우 방전이 일어난다. 밀도반전은 방전 시 전자와 N₂와의 충돌로 N₂ 분자가 \(V'' = 0 \) 에서 \(V'' = 1 \) 의 진동준위로 들뜨게 되는데 이 들뜬 준위는 CO₂ 분자의 001 진동준위와 에너지 차가 작은 준위로 N₂ 분자는 에너지를 CO₂ 분자에 제공하고 아래로 떨어진다. 이 과정으로 CO₂ 분자가 001 준위로 들뜨게 된다. 들뜬 CO₂ 분자의 001 진동준위와 이보다 아래에너지 의 100 진동준위 사이에 밀도반전이 형성되어 레이저 발진이 가능하게 된다. 따라서 레이저 발전은 CO₂ 분자에서 일어나지만 N₂를 첨가함으로서 001준위로의 효율적인 여기가 가능하다. 한편 He 가스의 혼합으로 아래준위인 001 준위를 쉽사리 없앨 수 있기 때문에 밀도반전이 쉽게 일어날 수 있으므로 효율이 증대 된다. 따라서 N₂ He를 혼합하면 순수 CO₂ 만이 있을 때의 출력에 비해 매우 큰 출력을 얻을 수 있게 된다. 일반적으로 1m 길이의 방전관은 최적 조건에서 100W 까지 출력을 얻을 수 있다[34-36]. 이 CO₂ 레이저는 1964년 미국의 패텔이 처음으로 연속발진에 성공하였으며 현재 100 kW의 대형 CO₂ 레이저도 개발 되었다. 이 경우 방전관은 수십 m 에 이르 정도로 길이가 길기 때문에 대단히 큰 공간을 차지하는 불편함이 수반된다. 이러한 결점을 보완하기 위해 여두 가지 방안들이 모색되었는데 그 중에서도 가열된 CO₂ 가스의 급팽창에 의한 밀도 반전을 이용하는 가스 동력학 방법과 횡 여기 방법이 드러진다. 가스 동력학 방법으로 60kW의 연속 출력 방식을 얻은 바 있으며 횡 여기방법은 혼히 TEA CO₂ 레이저로 알려져 있는데 TEA Transverse excited atmospheric 의 머리글자를 뒤单词에. 대기압 정도의 가스 압력을 높은 전압으로 펄스방전을 일으켜서 밀도반전을 얻는다.

- 22 -
2.3.1.3 Nd:YAG Laser

산업용으로 많이 활용되는 고출력 Nd:YAG 레이저는 좋은 출력특성을 얻기 위해 많은 연구자에 의해 연구 개발되고 있다 [37-40]. 특히, 두 개의 레이저 막대를 이용한 레이저는 구조가 간단하고 제작이 용이하기 때문에 고출력 고체 18-레이저 공진기로 많은 연구가 이루어졌다 [38,39]. 이 레이저는 두 개의 Nd:YAG 막대를 공진기 내에서 대칭형으로 배열하면 빔질과 공진기의 안정도가 우수해진다고 알려져 있다 [37,39]. 이러한 특징 때문에 두 개의 Nd:YAG 막대를 이용한 고출력 레이저는 대칭형 공진기로 설계된 경우가 많다. 두 개의 레이저 막대로 구성된 대칭형 공진기는 레이저 막대들의 상대적 위치에 따라 빔질의 특성과 펌프광의 세기에 따른 공진기 안정영역에 대한 다른 특성을 가지고 있다. 평면거울로 이루어진 공진기의 경우 각각의 레이저 막대를 공진기 중심으로부터 공진기 길이의 $1/4$에 설치하면 펌프광의 세기에 따른 공진기 안정영역이 가장 넓게 된다 [37,38]. 그러나 이 구조에서는 안정영역이 넓은 대신 빔질은 다른 구조보다 좋지 않다. 반면 두 개의 레이저 막대가 서로 맞대어 있는 경우와 완전히 분리되어 레이저 거울에 각각 맞대어 있는 경우는 펌프광의 세기에 따른 공진기 안정영역은 작지만 레이저 빔질이 좋은 것으로 알려져 있다 [37,38]. 레이저 빔질이 좋으면서 펌프광의 세기에 따른 공진기 안정영역을 넓이는 방법 중 한 가지는 두 개의 레이저 막대의 끝 면들을 오목 렌즈 형태로 가공하여 서로 맞대게 하거나 완전히 분리하여 레이저 거울에 각각 맞대도록 하는 것이다 [41]. 이 두 공진기 구조는 기하 광학적 관점에서 공액관계가 있다. 따라서 광선판달행렬(ABCD 행렬) 또는 g-매개변수를 이용한 수치해석의 결과에 의하면 공액관계에 있는 두 공진기의 레이저 출력 특성은 같다 [37,38].
2.3.1.4 반도체 다이오드 Laser

PN 접합에 forward bias를 걸어주면 n-type의 electron p-type의 hole이 depletion region에서 recombination 하면서 band gap만큼의 에너지를 빛으로 발산 한다. 이것을 반도체 레이저 혹은 레이저 다이오드라고 말한다. 이런 반도체 레이저는 다른 레이저 디바이스와 비교하여 소형이고 경량이며 수명이 길다. Threshold Voltage가 작아 작은 전압을 이용하여 레이저를 발진시킬 수 있으며 저 전류와 저 전력 동작에 의한 직접 여기가 가능하게 된다. 타 레이저에 비하여 단위면적에서의 발광 파워가 크며 레이저와 전자적인 소자를 한 개의 칩에 제작시키는 모놀리틱형 광전 IC회로의 구현이 가능하다.
2.4 레이저 실링

유리의 레이저 접합은 최근 산업계의 다양한 분야에서 유리 기판들을 적층하고 부착하는 기술을 활용하고, 특히 디스플레이 기기 및 염료감응 태양전지 소자에 활용되기 시작하였다. Frit glass와 같은 무기 실링재를 이용한 유리의 접합공정은 기존의 금속 솔더를 이용한 공정에 비해 오염 및 부식에 의한 영향이 적으며 액체시를 이용한 접합공정에 비해서 밀봉성능이 우수한 장점 보유하고 있다. 또한 유리와 열팽창계수의 비슷해 접합시 발생하는 응력문제를 해결할 수 있어 높은 밀봉 성능이 요구되는 유리의 접합공정에 다양하게 적용 가능하다. 또한 공정 운도가 400~500℃가 되는 전기오븐의 사용은 OLED, 광통신용 광 도파로, 태양전지 등 유기소재가 포함된 소자의 패키징 및 광학소자의 적용에 불가능한 단점이 있어 레이저를 이용한 frit의 국부적인 가열법이 최근 개발 및 적용되기 시작하였다.
2.4.1 Laser Sealing을 통한 유리의 접합

염료감응태양전지 제조 과정 중 실링공정은 외부 공기와 습기로부터 cell을 보호하기 위한 것이다. 실링 기술이 진화하면서 Glass Frit을 열로 녹여 glass를 sealing하는 기법으로 1mm이하의 두께로 실링이 가능하게 되었다. 그런데 열을 이용한 공법은 염료감응전지의 전해질과 염료를 포함한 모듈 전체를 300℃ 이상의 열을 전달함으로 신뢰성에 문제가 발생하게 된다. Laser Glass Frit sealing은 IR wavelength의 fiber laser를 국부위치에만 조사시켜 내부의 소자의 열화에 대한 손상 없이 sealing 할 수 있다.

디스플레이에 주로 사용 되고 있는 Laser sealing 방법은 Glass Frit이 인쇄된 기판 유리와 하판유리를 접착 후 레이저를 조사하는 방법이다. 가장 기본적인 레이저 조사방법은 기판 상단에서 레이저를 조사하여 레이저로 녹은 Glass Frit이 중력에 의하여 하판의 유리에 떨어져 접합이 되는 방식이며 laser 조사법은 실링재에 직접 조사하여 접합하는 방법, 레이저로 반사시켜 상, 하 기판 모두 조사 시키는 방법 등 다양한 조사법이 연구되고 있다.

염료감응태양전지의 마무리 실링은 무기물 실링재가 첨가된 페이스트를 디스펜서 또는 스크린 프린팅 방식을 사용하여 염료감응태양전지의 가장자리 부분에 도포하여 레이저를 조사하여 열처리 하는 방식이다. 이 기술은 Laser에 의해 국부적으로 봉착시키므로 양산성이 있으며, 이를 위해 기본적으로 갖추어야 할 주요한 특성은 450℃ ~ 500℃사이 적은 소성이 가능하고, 유리 안정성이 요구되며, 기판 유리와의 열 매칭성을 만족해야 하며, 600nm ~ 800nm 또는 1000nm ~ 1100nm 대역의 Laser 가시광선 영역을 만족하는 레이저 흡수도를 갖추어야 한다. Fig. 11과 같이 수직으로 레이저를 조사하기 때문에 프릿의 레이저 흡수도가 높지 않다면 레이저가 실링재를 투과하여 전해질에 닿아 열 충격을 가하기 쉽다. 따라서 실링재가 낮은 파워의 레이저를 최대한 흡수하여 실링재를 국부적으로 열처리하여 염료감응태양전지의 봉착 하는 것이 최대의 목표라 할 수 있다.
Figure 6. A schematic diagram of DSSCs sealed by laser sealing with glass frit.
2.4.2 프릿을 이용한 실링 메커니즘

프릿을 열처리 할 때는 아래 Fig. 12와 Fig.13에 나타난 것처럼 세 가지 단계를 거친다. 첫 번째 단계는 작은 사이즈의 프릿이 소결 거동이 시작되며 수축이 일어 나는 단계이다. 수축이 일어나며 프릿 사이의 공간에 존재하던 기체가 외부로 빠져 나가는 나갈 수 있다. 두 번째 단계는 프릿이 녹아 서로 반응하며 fusion이 일어나는 단계로서 점점 반구 형태의 액체 상태로 녹아들며 기판과 접착을 이루는 단계이다. 이 상태에서 기판의 실링 특성이 가장 좋다. 세 번째 단계는 프릿이 완전히 녹아 기판에 퍼져 내리는 단계이다. 이 단계의 프릿은 아주 낮은 점도를 가지고 있기 때문에 실링제로서 기능을 하기에 적합하지 않은 상태이다.

프릿이 이러한 열적 거동을 이루며 안정한 상태로 실링이 되려면 Sintering과 Fusion이 발생하는 온도에서 적당한 시간이 요구된다. 이러한 이유로 레이저가 조사 되었을 때 급격한 승온과 조사 후 급격한 냉각을 이루는 레이저 실링 공정에 있어서 낮은 파워의 레이저에 의한 열처리 공정이 요구된다.
Figure 7. A schematic graph showing the change of two dimensional area of pelet consist of low melting glass frit.
Figure 8. The schematic diagram of sintering stages for the low melting glass frit.
2.5 레이저 실링재

무기물 레이저 실링재는 무연계(Pb-Free) 유리를 주성분으로 하고 열팽창 계수 저하를 위한 세라믹 필러와 페이스트 제조를 위한 유기 바이클(vehicle)을 함유하고 있다.

내화성 필러(filler) 분말을 첨가하면, 봉착 재료의 열팽창 계수가 빈 봉착 재료의 열팽창 계수에 정합하기 쉬워지고, 봉착 부위에 부담한 응력이 잔류하는 사태를 방지할 수 있다. 또, 내화성 필리(filler) 분말을 첨가하면, 봉착 부위의 기계적 강도를 높이는 할 수 있다. 단, 내화성 필러 분말의 함유량이 75 체적% 보다 많다면, 유리(glass) 분말의 함량이 상대적으로 적어지기 때문에, 봉착 재료의 유동성이 저하 되고, 봉착 강도가 저하되기 쉬워진다.

바이클은 주로 용매와 수지바인더(binder)로 이루어지며, 수지 바인더(binder)는 페이스트(paste)의 점성을 조절하는 목적으로 첨가 된다. 또, 필요에 따라, 계면활성제, 중점제 등을 첨가할 수도 있다. 제작 되는 페이스트는, 통상적으로 디스펜서 (dispenser)나 스크린 인쇄기 등의 도포기를 이용하고 유리 기판 등에 도포되고 난 후, Binder Burn Out (BBO) 공정에 의해 용매와 바인더가 제거 된다.

바인더로는, 아크릴산에스테르(ester)(아크릴 수지), 에틸셀룰로오스(ethyl cellulose), 폴리에스틸렌 클리콜(polyethyleneglycol) 유도체, 니트로셀룰로스(nitrocellulose), 폴리 에틸렌 스타렌(poly methyl styrene), 폴리에틸렌 카보네이트(Polyethylene carbonate), 메타크릴산 에스테르(ester) 등이 사용 가능하다 [42].

용매로서는, α-타피네올, 고급 알코올(alcohol), γ-부칠라쿤틴(γ-BL), 테트라린, 브릴 갈비 톨 아세테이트(toll acetate), 초산에틸, 초산 갯바위 아밀(iso amyl), 에틸 에테르(ethyl ether), 벤질알코올(benzyl alcohol), 톨루엔(toluene), 3-메톡시(methoxy)-3-메틸 부탄올(methyl butanol) 등이 사용 가능하다 [36].
Figure 9. A schematic diagram of commercial process for the production of paste.
2.5.1 레이저 실링용 글라스 프릿

140μm 이하 유리 분말을 글라스 프릿이라 한다. 유리의 조성을 설계하고 아래의 과정을 통해 원하는 사이즈의 글라스 프릿을 제조할 수 있다. 유리의 조성 설계 시 CuO, Fe₂O₃, NiO, V₂O₅, CoO 등의 천이 금속 산화물을 첨가하여 유리의 광흡수도를 향상시켜 레이저에 의한 유리의 발열 특성을 향상시킬 수 있다 [43,44].
Figure 10. A schematic diagram of process for the production of frit [43].
2.5.2 무연계(Pb-free) 조성의 필요성

전 세계적으로 RoSH등의 친환경 규제정책의 일환으로 향후 몇 년 안으로 모든 전자제품에 관해 내(Pb) 성분의 함량을 규제하기로 함에 따라 PbO를 포함하지 않는 유전체, 격벽, 실링제의 개발이 활발히 진행되고 있다. Bi2O3계, B2O3-ZnO계, P2O5계, B2O3계를 중심으로 무연 조성이 개발되고 있으나, 기존의 PbO계 대비 유사한 물리적, 화학적 특성을 가진 재료는 개발되지 못하고 있다. 또한 이들 재료는 paste 및 green sheet화, UV 감광성 페이지트 또는 감광성 green sheet 등의 공정 재료로의 개발이 시도되고 있다. 과거 상용되는 유리조성물에는 Pb가 다량 함유된 PbO-B2O3-SiO2계가 주로 쓰였다. PbO는 프릿의 용융점을 낮추고, 산화물과의 젖음성을 향상시키는데 우수한 효과가 있기 때문에 저온 소성용 프릿에 일반적으로 첨가되는 성분이다. 하지만 환경적인 측면에서 보면 앞에서도 언급했듯이 PbO는 자체 또는 프릿 내에서는 대체적으로 안정한 물질이지만, 이들 재료가 폐기되어 폐수 중의 산 또는 알칼리 용액과 화학반응을 일으키게 되면 토양 및 수질 오염에 의한 환경 코해를 유발시키는 문제점이 있다. 또 다른 문제점은 소결 후의 막에 존재하는 기포 수에 관한 것인데 PbO량이 많으므로 점성유동이 심해져서 소결 후에 기포가 많이 발생하게 된다. 또 PbO의 환원으로 인한 결과, 주황색이던 프릿의 분말이 소성 후에 회색으로 변하는 현상이 나타나기도 하며, 소성막 내의 금속성 Pb가 내전압을 낮추는 역할을 함으로써 제품의 수명을 단축시키게 된다. 그리고 고속 quenching 기술 적용에도 불구하고 쉽게 실현상상을 수반함으로써 과량의 PbO 함량 없이는 투명한 유리를 얻는데 어려움이 따른다. 이러한 문제점들을 해결하기 위해서는 환경 친화적인 새로운 재료의 개발과 용융성 증대를 위한 무연계 유리에 대한 기초적인 조성개발 연구가 요구된다. 무연화 조성은 550℃ 이하의 온도에서 좋은 소결 특성을 얻기 위해 480℃ 이하의 유리 전이온도를 가져야 한다. 만약 유리가 결정화를 일으킨다면 유전체 소성온도 대역을 온도인 600℃ 이상에서 시작되는 저온 용융용 유리를 얻기 어려기 때문에 알칼리 산화물을 소량 첨가하게 된다. 하지만 알칼리 산화물을 전극과의 반응성 문제를 일으킬
수 있다.

글라스 프릿은 크게 결정질 형태와 유리질 형태로 나눌 수 있다. 결정질 형태란 열경화성 특성을 지니는 것으로 용융과 응고 과정을 거치면서 결정화가 일어나 재 용융 시에는 1차 용융 시 보다 2~3배의 높은 온도를 필요로 하는 특성이고, 한 번 용융, 응고 시킨 후 재용융이 필요 없는 곳에 주로 사용된다. 반면 유리질 형태는 열가소성 특성을 지니는 것으로 용융과 응고를 반복하여도 결정화가 일어나지 않아 항상 동일한 온도에서 용융이 일어나는 특성을 지니고 있다. 진공 실링에 부합되는 프릿 재료의 개발은 대부분의 진공 실링에서 프릿의 bubble 문제를 발생하지 않고, 실링 재료들이 이동하거나 소자들 오염시키지 않아야 하고, 상부 및 하부 기판들과 친화성이 있어 응력 등을 발생시키지 않아야 하므로 개발의 시급성이 가장 크다고 할 수 있다.
3. 실험 방법

3-1. 유리의 조성 설계

본 연구에서는 레이저 실링에 적합한 유리 프릿을 설계하기 위해 보다 낮은 파워의 레이저를 흡수 하여 유리 연화점 (glass softening point) 이상의 온도를 얻고자 비스무스계 저융점 유리 조성에 천이금속 산화물을 첨가하여 다음과 같은 유리 조성을 설계 하였다. Bi₂O₃, B₂O₃, ZnO계의 유리 조성에 흡광도를 높이기 위해 CuO를 함량별로 첨가 하였다. 첨가된 CuO 함량에 따라 Glass A ~ G로 명명하였다 (Table 3).
Table 3. Glass composition of Bi$_2$O$_3$-ZnO-B$_2$O$_3$-CuO (in mole%)

<table>
<thead>
<tr>
<th>Samples</th>
<th>Bi$_2$O$_3$</th>
<th>B$_2$O$_3$</th>
<th>ZnO</th>
<th>CuO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass A</td>
<td>35</td>
<td>25</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>Glass B</td>
<td>35</td>
<td>25</td>
<td>39.85</td>
<td>0.15</td>
</tr>
<tr>
<td>Glass C</td>
<td>35</td>
<td>25</td>
<td>39.7</td>
<td>0.3</td>
</tr>
<tr>
<td>Glass D</td>
<td>35</td>
<td>25</td>
<td>39.1</td>
<td>0.9</td>
</tr>
<tr>
<td>Glass E</td>
<td>35</td>
<td>25</td>
<td>38.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Glass F</td>
<td>35</td>
<td>25</td>
<td>37</td>
<td>3</td>
</tr>
<tr>
<td>Glass G</td>
<td>35</td>
<td>25</td>
<td>35.6</td>
<td>4.4</td>
</tr>
</tbody>
</table>
3-2. 유리의 물성 평가

3-2-1. 열적 특성

유리의 열적 특성 분석을 위해 TG-DTA (Thermogravimetric-Differential Thermal Analyzer, Rigaku Thermo Plus TG-8120, Japan)를 이용하였다. DTA를 이용하여 평균 입경이 45㎛ 이하인 유리 프릿의 유리 전이점 (Tg, Glass transition point)을 10℃/min 승온 속도로 상온에서 700℃까지의 범위에서 측정 하였다.

3-2-2. Emissivity

유리의 방사율 (Emissivity)을 측정하기 위해 Fourier-Transform infrared spectrometer (FT-IR, MIDAC M2410, MIDAC Corp, USA)를 사용 하였다. 방사율이란 물체가 외부 에너지를 흡수 한 후 일부 재 방사하나 표면 반사 현상이 일어날 때 재복사 하는 에너지 비율을 말하며, 이론적으로 외부 에너지를 흡수한 후 100% 복사 하고 표면 반사하지 않는 물체를 ‘blackbody’라 하며 이때의 방사율 (ε)값을 1로 규정 한다.

3-2-3. 광학적 특성

레이저 조사에 의한 실링재의 발열 특성을 향상시키기 위해 비스무스계 유리에 CuO를 첨가하여 광학적 특성을 분석 하였다. UV-Visible spectrophotometer (UV-2450, Shimadzu)를 이용하여 CuO함량에 따른 비스무스계 유리의 색 좌표, 투과도와 흡수도를 측정하였다.
3-3. 레이저 발열 특성

비스무스계 유리의 광학적 특성에 따른 레이저 발열 특성을 분석하기 위해 1064nm 단파장을 갖는 fiber laser (LC-aIII-Amada)를 이용 하였다. 각각의 흡광도가 다른 유리에 레이저를 조사 하여 유리 표면에 발생하는 온도를 infrared (IR) camera (FLIR SC325, FLIR Systems Inc, UK)를 이용하여 측정 하였다. 복사 온도는 측정 대상이 된 물체와 동일한 온도화의 복사향도 또는 복사의 출력 사도를 나타내는 흑체의 온도이다. 그 등식은 다음과 같다.

\[\sigma T_{rad}^4 = \varepsilon \sigma T^4 \]

\(T_{rad} \): 복사 온도, \(T \): 실제 온도,
\(\varepsilon \): 실제 물체의 방사율, \(\sigma \): 스테판-볼쯔만 상수

복사율은 모든 파장 또는 주파수에 대하여 가중치를 둔 평균 복사율 이어야 한다. 그러면 실제 온도는 다음과 같다.

\[T_l = \varepsilon^{-1/4} T_{rad} \]
3-4. 유리 구조 분석

천이금속 산화물을 이용한 레이저 발열 (Transition-metal-atom-heating process) 원인을 분석하기 위해 모 유리 내에 천이금속 산화물인 CuO의 산화상태나 원자의 하전상태 혹은 주위의 결합 상태를 분석하기 위해 XPS를 이용하여 CuO 함량에 따른 유리의 구조를 분석 하였다. XPS 측정은 dual aluminum-magnesium anodes X-ray gun을 장착한 spectrometer (VG Microtech, ESCA 2000) 장비를 이용하여 anode로부터 방사된 Al Ka (hv = 1486.6eV) 사용하여 170W에서 수행하였다. 시편은 CuO를 첨가한 벌크 유리를 T_g 근처의 온도에서 열처리 하여 준비 하였다.
4. 결과 및 고찰

4.1 실링재 모 유리의 열물성

본 연구에서 사용된 비스무스계 유리 (Bi₂O₃-ZnO-B₂O₃)의 3성분 계에서 첨가된 Bi₂O₃의 함량에 따라 유리 전이점 \(T_g \): Glass transition point)이 점점 낮아지는 것을 확인 할 수 있었다. Bi₂O₃의 함량이 35mol%에서 50mol%까지 \(T_g \)가 500°C 이하인 분석 결과를 통해 이러한 조성들이 레이저 실링용 저융점 유리 프릿으로 적합하다는 것을 확인 할 수 있었다. 이러한 기초 실험을 통해 모 유리의 열 물성을 파악 하고 실링재의 모 유리의 조성을 설계한 후 CuO를 참가하여 추가 연구를 진행 하였다.
Figure 11. Thermal properties such as glass softening point, dilatometric softening point and glass transition temperature of bismate glasses with different Bi$_2$O$_3$ content.
4.2 레이저 실링 후 미세구조

기존 레이저 실링재를 사용하여 레이저 실링 후 표면을 분석한 결과 기판 유리와 실링재로 사용된 프릿에 미세 균열과 미세 기공을 확인할 수 있었다. 이러한 미세 균열과 기공은 레이저 실링 시 승온, 냉각 속도와 관련되는 것으로 예상된다. 레이저에 의한 급격한 승온과 온도 하강은 유리에 강한 열응력을 발생시키므로 기판과 실링재가 냉각되며 수축할 때 열팽창 계수 차이에 의해 균열을 가져올 수 있기 때문이다. 또한 승온과 냉각 속도가 너무 빠르면 프릿 사이의 공간에 존재하는 기체가 외부로 빠져나갈 시간적 여유가 없이 냉각되어 고체가 되기 때문에 내부에 기공으로 존재하게 되는 것이다. 이러한 기공들은 실링재 내부의 결함으로 존재하여 균열 발생의 근원이 되거나 균열의 확장을 쉽게 해준다.
Figure 12. SEM images of sealant on the glass substrate after laser irradiation.
이러한 결함들의 원인을 분석하기 위해 레이저 실링 시 실링재에 발생하는 온도를 정확하게 측정 할 수 있는 방법이 요구 된다. 레이저 실링은 미세한 영역에서 급격한 열의 발생과 급격한 냉각이 이루어지므로 레이저 실링의 온도 profile 측정은 매우 어려운 분석 중 하나 이다. 이러한 레이저 실링 시 발생하는 열 충격과 여러 가지 결함의 원인을 분석하기 위한 방법을 제시 하고자 열화상 카메라 (infrared camera)를 이용하여 레이저를 조사 하는 동안 실링재 표면에 발생하는 온도를 측정 하였다.

CuO가 첨가된 유리의 승온, 냉각 온도 profile을 분석 한 결과 레이저 조 사 후 0.15초 이내에 최고 온도에 도달하는 급격한 승온이 이루어지는 것을 확 인 할 수 있었다. 승온과 냉각을 포함한 모든 과정이 0.5초 이내에 이루어지므 로 유리에 가해지는 열 충격이 급격한 승온과 냉각에 의한 것 이라는 것을 확 인 할 수 있었다. 이러한 열 충격을 줄여주기 위해 Dual-beam Laser를 이용하 여 냉각된 유리를 여러 번 열처리 해주어 열응력을 줄여 주어야 한다.

따라서 실링재의 열 충격을 최소화하기 위해 낮은 레이저 파워 에서도 많은 빛 에너지를 흡수해 열에너지로 변환 시킬 수 있는 새로운 조성의 레이저 실링재가 요구 된다.
Figure 13. Temperature profile on the surface of sealant during laser irradiation.
4.3 레이저 실링재의 기본 물성

대표적인 천이금속 산화물인 CuO를 첨가하여 유리전이온도 (Tg), 방사율 (Emissivity)과 색 좌표를 측정 하여 Table 4에 나타내었다. CuO를 첨가함에 따라 유리전이온도는 조금씩 낮이지는 경향성을 보인다. 이는 CuO가 비스무스계 유리 내에서 수석체 역할을 하며 유리의 구조를 약하게 한다는 것을 나타낸다. 하지만 CuO를 첨가하여도 유리전이온도가 저온 실링에 적합한 376°C ~ 386°C 에 형성 되는 것을 확인 할 수 있었다.

열화상 카메라를 사용하여 레이저 조사 시 실링재의 표면 온도 변화를 측정하기 위해 방사율을 측정 하였다. 비스무스계 유리에 첨가된 CuO 함량에 따라 방사율이 증가하는 것을 확인 하였다. 이 결과를 통해 비스무스계 유리에 CuO를 첨가함에 따라 비스무스계 유리가 전체 파장의 빛에서 많은 에너지를 흡수하고 방출 하는 것을 알 수 있었다. 따라서 비스무스계 유리에 CuO를 첨가하면 빛 에너지를 열에너지로 더욱 효율적으로 변활 시킬 수 있을 것이라는 예상 하였다.

색좌표 측정 결과 비스무스계 유리는 CuO를 첨가함에 따라 노란색에서 어두운 녹색 계열의 색을 띄는 것을 확인 하였다. 이 결과를 통해 CuO를 첨가함으로써 가시광선 영역의 전체 파장에서 더욱 높은 광 흡수도를 나타 낼 것이라는 예상을 할 수 있었다.
Table 4. Glass transition point, emissivity and chromaticity coordinates of bismate glasses with different CuO content

<table>
<thead>
<tr>
<th>Samples</th>
<th>Tg</th>
<th>Emissivity</th>
<th>Chromaticity coordinates (CIE)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Glass A</td>
<td>386.8</td>
<td>0.738</td>
<td>0.3241 (1±0.00015)</td>
</tr>
<tr>
<td>Glass B</td>
<td>386.4</td>
<td>0.768</td>
<td>0.3586 (1±0.00025)</td>
</tr>
<tr>
<td>Glass C</td>
<td>386.2</td>
<td>0.772</td>
<td>0.3753 (1±0.00032)</td>
</tr>
<tr>
<td>Glass D</td>
<td>384.7</td>
<td>0.782</td>
<td>0.4379 (1±0.00011)</td>
</tr>
<tr>
<td>Glass E</td>
<td>384.3</td>
<td>0.806</td>
<td>0.4015 (1±0.00013)</td>
</tr>
<tr>
<td>Glass F</td>
<td>379.7</td>
<td>0.828</td>
<td>0.4071 (1±0.00024)</td>
</tr>
<tr>
<td>Glass G</td>
<td>376.1</td>
<td>0.838</td>
<td>0.4131 (1±0.00033)</td>
</tr>
</tbody>
</table>
4.4 광학적 특성

CuO를 첨가함에 따른 비스무스계 유리의 여러 가지 파장의 레이저에 대한 흡수도를 분석하기 위해 300nm ~ 1100nm 파장영역의 투과도와 흡광계수를 측정하여 Fig. 17에 나타내었다. Fig. 17의 결과는 첨가된 CuO의 함량이 증가함에 따라 모든 파장의 빛에 대한 비스무스계 유리의 투과율은 감소하고 흡광계수는 증가하는 경향성을 보여 준다. 이러한 결과를 통해 CuO를 첨가하면 가시광선 영역과 근적외선 영역에서 비스무스계 유리의 광흡수도가 증가하는 것을 확인하였다. 특히 700nm ~ 800nm의 파장에서의 광흡수도는 CuO를 첨가함에 따라 증가 폭이 다른 파장에 비해 크게 나타나고 있었다. 이러한 영역의 흡수 피크는 Cu$^{2+}$의 영향에 의한 것이라고 보고되고 있다 [45,46]. 이 결과를 통해 CuO를 첨가하면 비스무스계 유리 내의 Cu$^{2+}$로 존재하며 Cu$^{2+}$ 이온이 유리의 흡수도를 높여주는 역할을 한다는 가설을 세우고 이를 증명하기 위한 추가 연구를 진행하였다.
Figure 14. Transmittance (a) and Absorption coefficient (b) of CuO added bismate glasses with different CuO content.
현재 염료감응태양전지의 레이저 실링에 널리 사용 되고 있는 파이버 레이저 (fiber laser)에 대한 흡수도를 나타내기 위해 1064nm 파장에서의 광 흡수도를 Fig. 18에 나타내었다. Fig. 17의 결과를 통해 700nm ~ 800nm의 파장을 갖는 레이저의 흡수도가 가장 우수 하며 레이저에 의한 발열 또한 가장 우수 할 것이라는 예상을 할 수 있다. 하지만 산업체에서는 가시광선 영역과 근 적외선영역의 파장을 갖는 여러 가지 파장의 레이저를 사용 하고 있기 때문에 이러한 요구를 충족 시켜 주기 위해 실링제용 유리의 넓은 파장의 광 흡수도를 극대화 시키는 것이 유리하다. 따라서 가시광선 전 영역과 근 적외선 영역의 넓은 파장의 광 흡수도를 향상 시킬 수 있는 CuO를 유리에 첨가하여 여러 가지 파장의 레이저에 대한 실링 특성을 분석 하였다.

CuO를 첨가함에 따라 1064nm의 파장에서 광 흡수도는 직선적 비례 관계를 갖는 그래프를 나타내며 증가 하였다. 이를 통해 CuO를 첨가함으로써 더욱 많은 양의 레이저가 유리에 흡수 되고 흡수된 빛 에너지에 의해 유리 내에 존재하는 원자들의 열 진동이 활발히 이루어져 높은 열을 발생 시킬 수 있다는 것을 유추해 볼 수 있다.
Figure 15. Absorption coefficient of CuO added bismate glasses with different CuO content at 1064nm wavelength which corresponds to the fiber laser.
4.5 레이저에 의한 유리의 발열 특성

CuO 첨가에 따른 실링제의 레이저 흡수도 향상과 레이저 조사 시 발열 특성 변화를 측정하여 Fig. 19에 나타내었다. 1064nm 파장을 갖는 Fiber 레이저를 사용하여 레이저 파워를 1.4Watt ~ 1.6Watt 로 조절 하며 광 흡수도에 따른 유리의 발열 특성을 분석 하였다. 0.3mol%의 CuO를 첨가 할 때 까지 유리의 표면 온도는 100°C이상으로 오르지 않았다. 0.9mol%의 CuO를 첨가한 유리에 레이저를 조사 하였을 때 유리 표면의 온도는 급격히 증가 하여 유리의 연화점 보다 높은 800°C 이상의 온도에 도달 한 것을 볼 수 있었다.

하지만 이러한 결과는 Fig. 18에서 나타난 결과와 일치 하지 않는 결과 이다. CuO를 첨가함에 따라 유리의 광 흡수도는 직선적 비례 관계를 보이며 증가 하는 반면, 레이저에 의한 발열은 0.3mol% ~ 0.9mol% 영역에서 급격한 증가를 보이며 그 외의 첨가량에 따라서는 큰 차이를 보이지 않는다. 따라서 레이저에 의한 유리의 온도 상승은 광자의 흡수율에 비례하는 것이 아니라 발열이 일어 나는 threshold 광 흡수율이 존재한다는 것을 알 수 있다.

CuO의 첨가량이 0.3mol%까지는 발열이 일어나지 않고 0.9mol% 이상에서 발열이 일어나는 원인을 분석하기 위해 다음과 같은 가설을 세울 수 있었다. 유리 내에 존재하는 Cu2+의 양이 어느 정도 이상이 되었을 때 열전도도가 낮은 유리내의 분자들의 열 진동이 주위의 열전동과 상승효과를 이루어 온도 상승을 일으키는 threshold값에 도달 한다고 사료 된다.
Figure 16. Maximum temperature on CuO added bismate glasses with different CuO content and laser power.
4.6 유리의 구조 분석

광학적 특성 분석을 통해 비스무스계 유리에 CuO를 첨가함에 따라 700nm ~ 800nm의 파장에서의 광 흡수도가 급격히 증가하는 것을 확인하였다. 이 영역의 광 흡수도 변화가 Cu²⁺이온에 의한 영향이라는 학술 보고들과 본 연구의 가설을 확인하고 CuO 첨가에 따른 레이저 흡수도 향상 원인을 분석하기 위해 비스무스계 유리 내에 존재하는 Cu이온의 구조를 분석 하여 Fig. 20에 나타내었다.

CuO의 첨가량이 0.3mol%이하 에서는 비스무스계 유리 내에 존재하는 Cu이온의 함량이 매우 적기 때문에 Cu²⁺이온의 비율을 분석 할 수 없었다. 이는 X-ray에 의해 여기 된 Cu이온의 양이 아주 적다는 것을 나타낸다. 이러한 경향성은 소량의 CuO가 첨가된 유리에 레이저를 조사 하였을 때 레이저와 반응하여 전자를 여기서서 열을 발생 할 수 있는 확률이 아주 낮다는 것을 나타낸다. 이러한 결과를 통해 낮은 CuO 함량을 갖는 비스무스계 유리에서 레이저에 의한 온도 상승이 크게 일어나지 않는 원인을 유추해 볼 수 있었다.

CuO의 첨가량이 0.9mol%이상에서는 레이저 조사 시 급격한 온도 상승을 나타내고 있는데 이러한 결과는 비스무스계 유리 내에 존재하는 Cu²⁺의 함량 비율이 0.9mol%에서 급격히 증가 하는 것과 동일한 경향성을 보여 준다.

이러한 결과를 토대로 비스무스계 유리를 사용한 레이저 실링 시 요구되는 최적의 광학적 조건과 그에 따른 발열 조건을 가지는 유리의 조성과 기초 물성 값을 제공 할 수 있게 되었다.
(a)

(b)

(c)
Figure 17. XPS analysis of Cu ion within CuO added bismate glasses for laser sealing. (a) CuO0.3mol% (b) CuO0.9mol% (c) CuO1.5mol% (d) CuO3mol% (e) CuO4.4mol%.
5. 결 론

본 연구에서는 레이저 설링에 적합한 소재 개발을 위해 금속 솔더와 액체시에 비해 안정성 및 밀봉 성능이 우수한 무기 설령재를 염료감응태양전지에 활용하기 위한 기초 물성 값을 제공하기 위하여 non-PbO계 유리를 매트릭스로 하고, CuO를 첨가제로 사용하여 유리를 제조 하여 그들의 열적, 광학적 특성을 평가하였다.

광 흡수도를 높이기 위해 널리 사용 되고 있는 천이금속산화물 중 하나인 CuO를 광 흡수도가 낮은 비스무스계 유리에 첨가하여 광학적 특성을 분석 하였다. CuO를 첨가함에 따라 유리의 투과율은 낮아지고, 광 흡수율을 높아지는 결과를 얻을 수 있었고 이를 바탕으로 낮은 레이저 파워에서도 모든 가시광선 영역과 근 적외선 영역에서 높은 광 흡수를 이루는 많은 열을 발생시킬 수 있을 것이라 예상 할 수 있었다. 실제 0.9mol%의 CuO를 첨가한 유리에 레이저를 조사 하였을 때 연화점 이상의 높은 온도를 얻을 수 있었고, 0.3mol% 이하의 CuO를 첨가 하였을 때는 높은 레이저 파워에서도 유리에 발열이 일어나지 않는 것을 확인 하였다. 이러한 결과를 통해 레이저 설령에 요구되는 온도를 발생시키기 위한 유리의 광 흡수도를 제시 하고, 유리에 첨가되는 천이금속 산화물의 함량을 정량적으로 제시 할 수 있었다.

천이금속 산화물인 CuO 첨가에 따른 광 흡수도 변화와 레이저 조사 시 광 흡수도 변화의 원인을 분석하기 위해 유리 내에 존재하는 Cu^{2+}이온의 영향을 분석 하 고자 하였다. XPS 분석 결과, 0.9mol% 이상에서 Cu^{2+} 이온이 검출되기 시작 하였고 이는 0.9mol% 이상의 CuO를 첨가 하였을 때 레이저 조사 시 온도가 급격히 상승한 결과와 일치한다. 이를 통해 유리내의 Cu^{2+}이온이 레이저에 의한 유리의 발열에 큰 영향을 미치는 것을 알 수 있었다.

이 연구결과를 바탕으로 열적 기계적 특성이 우수한 저융점 무연계 (Pb free) 유리인 비스무스계 유리에 CuO를 첨가하여 레이저 흡수도를 향상 시켜 레이저 설령제로서 활용 가능성을 확인 할 수 있었고, 신재생에너지 산업의 발전을 위한 염료 감응태양전지의 설령 성능이 우수하고 안정성이 뛰어난 무기 소재의 기초 물성 값을 제공 할 수 있었다.
6. 참고 문헌

[8] 전자부품연구원, 태양광 발전시장 동향, .11, p.6 (2007)

[28] Kohjiro Hara and Hironori Arakawa, Dye-sensitized Solar Cells

[42] WIPS PIView 3.3.4.4 (2011.3.24)

