고온 태양열을 이용한
2단계 물분해 화학반응기의 사이클 연구

Research of Two-Step Water Splitting Chemical Reactor Cycle By High Temperature Solar Thermal

2011年 2月

仁荷大學校 大學院

機械工學科(熱 및 流體工學専攻)

金 太 俊
Research of Two-Step Water Splitting Chemical Reactor Cycle By High Temperature Solar Thermal

2011年 2月

指導教授 徐 泰 範

이 论文를 確士学位論文으로 提出함.

仁荷大學校 大學院

機械工学科(熱 및 流體工學専攻)

金 太 俊
이 논문을 金 太 俊 의 碩士學位論文으로 認定함.
요 약 문

태양에너지는 지구상에서 가장 풍부한 에너지원이다. 따라서 미래 대체 에너지로서 많은 각광을 받고 있다. 집광비 20%의 효율을 갖는 태양열 시스템을 이용하여 지구 면적의 0.1%만을 사용하면 현재 전 세계 에너지 수요를 충분히 공급할 수 있다. 그러나 전기 에너지와 화석연료에 기반을 둔 현재의 에너지 시스템에 태양에너지를 적용할 수 있도록 전환되어야 하는 과제가 남아있다. 이러한 문제점을 해결하기 위한 방법으로서 주목 받고 있는 기술이 태양열을 이용한 수소의 생산이다. 물 분해, 탄화수소연료의 개질 등의 방법이 태양열을 이용한 수소생산 방법으로 연구 및 사용되고 있으며, 최근에는 태양열을 이용한 직접연분해 및 열화학적 방법이 연구 단계에 있다. 그러나 필요하지 않거나 직접적으로 분해에 사용하기 위해서는 2500K의 고온의 열원이 필요하고 폭발성 혼합물을 형성될 것을 막기 위해 부수적인 장치들을 더 필요로 한다.

그럼에도 불구하고 본 연구에서는 이러한 문제점들을 해결하기 위해 상대적으로 저온의 영역에서 태양열을 이용한 물 분해 수소생산을 위한 다단계 열화학 사이클에 대한 지속성연구를 진행하였다. 1차 실험에서의 금속 산화물의 성능 및 열화학 반응을 위한 실험조건 부터 3차 실험에 이르기까지의 실험 조건 변화에 대한 내용을 담았다. 또한, 사이클 지속성을 위하여 변화시킨 금속 산화물과 실험 조건에 대한 결과를 비교 검토 하였다.
Abstract

Among renewable energy sources, it is evaluated that solar energy is one of the rich energy in earth. Solar energy, therefore, was under the spotlight. If we use solar system that have 20% efficiency of condensed rate, we will enough to supplied about current global energy demand. But solar energy have a problem to be applied with recently electrical energy based and fossil fuel based energy system. Production of hydrogen using solar thermal system was most emerging technology to solve this problem. Water decomposition, reforming of hydrocarbon fuels method used to produce hydrogen by using solar were researched and has been used. In recently, direct thermal decomposition and thermochemical methods using solar are in the researching. However, If we decompose water for resonalbe decomposition using the direct thermal decomposition method, we need high temperature at 2500K and more collateral device to prevent explosive mixture.

In this study, therefore, to solve these problems that in the area of relatively low-temperature solar–powered multi-step thermochemical water splitting cycle for hydrogen production was studied for the persistence. From the performance of metal oxide and the experiments conditions for thermochemical reactions in a first experiments to third experiments information on the experimental conditions was intended. In addition, results were compared for persistence about changed experimental conditions and metal oxides.
LIST OF TABLE

Table 1 Available metal oxides ... 7
Table 2 Specification of metal oxides ... 12
Table 3 Specifications of the dish system ... 20
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Process of spin coat method</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>(a) M.P.S.Z. (b) Metal Oxide</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>Dish solar thermal system</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>Schematic diagram of system</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>Pyrheliometer(NIP&ST-1)</td>
<td>21</td>
</tr>
<tr>
<td>6</td>
<td>Solar sensor</td>
<td>21</td>
</tr>
<tr>
<td>7</td>
<td>Outer shape of the reactor</td>
<td>22</td>
</tr>
<tr>
<td>8</td>
<td>Quartz window</td>
<td>23</td>
</tr>
<tr>
<td>9</td>
<td>Thermal ceramic fiber</td>
<td>23</td>
</tr>
<tr>
<td>10</td>
<td>Steam generator</td>
<td>24</td>
</tr>
<tr>
<td>11</td>
<td>Chiller</td>
<td>25</td>
</tr>
<tr>
<td>12</td>
<td>Overall process of two-step water splitting</td>
<td>26</td>
</tr>
<tr>
<td>13</td>
<td>Target with cooling system</td>
<td>27</td>
</tr>
<tr>
<td>14</td>
<td>Focusing image</td>
<td>27</td>
</tr>
<tr>
<td>15</td>
<td>IDL image analysis</td>
<td>28</td>
</tr>
<tr>
<td>16</td>
<td>Total energy percentage from center</td>
<td>28</td>
</tr>
<tr>
<td>17</td>
<td>Insolation and metal oxide surface temperature of the first experiment</td>
<td>32</td>
</tr>
<tr>
<td>18</td>
<td>Metal oxide shape after the first experiment</td>
<td>33</td>
</tr>
<tr>
<td>19</td>
<td>Quartz window shape after the first experiment</td>
<td>34</td>
</tr>
<tr>
<td>20</td>
<td>Amount of hydrogen production of the first experiment</td>
<td>35</td>
</tr>
<tr>
<td>21</td>
<td>Sintering phenomenon after the first experiment</td>
<td>35</td>
</tr>
<tr>
<td>22</td>
<td>Insolation and metal oxide surface temperature of the first cycle of the second experiment</td>
<td>36</td>
</tr>
</tbody>
</table>
Fig. 23 Insolation and metal oxide surface temperature of the second cycle of the second experiment .. 37
Fig. 24 Amount of hydrogen production of the first cycle of the second experiment .. 38
Fig. 25 Amount of hydrogen production of the second cycle of the second experiment .. 38
Fig. 26 Insolation and metal oxide surface temperature of the first cycle of the third experiment .. 39
Fig. 27 Insolation and metal oxide surface temperature of the second cycle of the third experiment .. 40
Fig. 28 Insolation and metal oxide surface temperature of the third cycle of the third experiment .. 41
Fig. 29 Insolation and metal oxide surface temperature of the fourth cycle of the third experiment ... 42
Fig. 30 Insolation and metal oxide surface temperature of the fifth cycle of the third experiment .. 43
Fig. 31 Amount of hydrogen production of the first cycle of the third experiment .. 44
Fig. 32 Amount of hydrogen production of the second cycle of the third experiment .. 44
Fig. 33 Amount of hydrogen production of the third cycle of the third experiment ... 45
Fig. 34 Amount of hydrogen production of the fourth cycle of the third experiment .. 45
Fig. 35 Amount of hydrogen production of the fifth cycle of the third experiment .. 46
목차

요약문 .. i
Abstract .. ii
LIST OF TABLES ... vi
LIST OF FIGURES ... vii

1. 서론 ... 1
 1-1. 연구 배경 ... 1
 1-2. 2단계 물 분해(Two-Step Water Splitting)의 이론적 배경 3

2. 금속 산화물(촉매) .. 5
 2-1. 금속산화물의 정의 ... 5
 2-2. 실험에 사용된 금속 산화물의 선정배경 ... 6
 2-3. 금속산화물의 제조 방법 .. 9
 2-4. 실험에 사용된 금속산화물의 제온 ... 11

3. 실험장치 및 방법 .. 13
 3-1. 실험장치 .. 13
 3-1-1. 실험 장치 구성 .. 13
 3-1-2. 실험 방법 ... 15
 3-2. Flux mapping .. 16

4. 결과 및 고찰 .. 29
 4-1. 1차 금속 산화물을 이용한 실험에 대한 금속 산화물의 수소 생산량 및 사이클 반복성 ... 29
고온 태양열을 이용한 2단계 물-분해 화학반응기의 사이클 연구

4-2. 2차 금속 산화물을 이용한 실험에 대한 금속 산화물의 수소 생산량 및 사이클 반복성 ... 30

4-3. 3차 금속 산화물을 이용한 실험에 대한 금속 산화물의 수소 생산량 및 사이클 반복성 ... 31

5. 결론 .. 47

6. 참고 문헌 ... 49
1. 서 론

1-1. 연구 배경 및 목적

폭증하고 있는 개발도상국들의 에너지 소비 증가율, 독과점 체제가 형성된 저편시장, 끝이지 않는 원유보유국에서의 분쟁으로 인한 에너지 수급비용의 폭등으로 신・재생에너지의 삼중화가 더욱 절실해지고 있다. 이로 인해 2010년, 늦어도 2027년 정책에 도달한 후 급격히 감소할 것으로 전망되는 원유생산량은 화석에너지의 주축으로 한 에너지 시스템의 개혁을 요구하고 있으며, 대다수 전문가들은 근본적인 해법으로 신・재생에너지의 개발을 꿈고 있다[1].

따라서 전 세계적으로 화석 연료를 대체할 수 있는 대체에너지에 대한 연구가 활발히 진행되고 있다. 우리나라의 경우에도 정부를 중심으로 대체에너지 활용에 대한 많은 노력을 기울이고 있으며, 현재 많은 종류의 대체에너지가 활용되고 있다[2].

고온을 이용한 화학 반응은 전 세계적으로 이미 활발한 연구가 진행되고 있다. 미국의 DOE와 유럽에서는 태양 열화학 공정으로 메탄의 수증기 개발방법을 선택하여 연구가 진행되었으며, 미국의 NREL(National Renewable Energy Laboratory)에서는 태양 열화학 공정으로 메탄의 열 분해를 선택하여 수소제조 가격과 수소 스테이션에서 수소를 제조하였다. 최근에는 Kodama et al.은 직접 1cm 평판된 금속판화물을 실험실 수준의 반응기와 인공광원을 사용하여 사이클 반복 실험을 수행하였다[5].
고온 태양열을 이용한 2단계 물-분해 화학반응기의 사이클 연구

Miller et al.은 CR5 반응기를 통해 다양한 폐리트/YSZ시스템의 특성분석과 material screening을 시행하였다[6]. Petrice Charvin et al.은 Fe₃O₄ 매개로 한 2단계 열화학 사이클을 열역학적으로 분석하고, 실험적연구를 통해 온도 및 압력에 대한 영향을 연구하였다[7]. S.Moller et al.은 실험 및 열역학적 분석을 통하여 화학 반응기를 설계, 제작 및 실험하였다[8].

국내의 경우에는 인하대학교에서 임시형 고온 태양열 집열기를 이용하여 실험에서 2단계 물-분해를 이용한 수소 생산에 대한 실험을 2008년 8월부터 진행하고 있으며, 많은 실험을 통해 반응기의 설계 및 제작 기술을 확보하고 있다. 하지만 반응기 설계 기술의 완성도와 실험의 불안정한 조건에 의해 많은 데이터를 확보하지 못한 상태이다. 따라서 많은 데이터 확보가 필요하며 안정적인 사이클 반복은 필수적인 연구과제이다.

따라서 본 연구에서는 2단계 물-분해 실험을 수행할 때 사용되는 금속산화물의 성능에 따라 사이클의 지속성에 대해 연구하고자 한다.

마지막으로 사이클 반복 시 생산되는 수소생산량의 비교를 통해 금속산화물의 성능 변화와 실험결과에 미치는 영향을 보고 위해 각 실험마다 생산되는 수소의 양을 측정하여 금속산화물의 성능을 비교하였다.
1-2. 2단계 물-분해(Two-Step Water Splitting)의 이론적 배경

H₂를 제조하기 위한 가장 이상적인 방법은 H₂O를 분해시키는 것이다. 대표적인 방법으로는 생물학적 방법, 광학적 방법, 전기분해, 직접열분해 및 열화학적인 방법이 있으며, 전기분해의 경우에는 고전적인 기술인 경우에 실용화되어 있으나, 전기분해법을 제외한 다른 기술들은 아직 연구 단계에 있다. 직접 열분해와 열화학적인 방법은 핵반응로나 제철소 용광로 등에서 나오는 폐열이나 태양열을 이용할 수 있는 기술이다. H₂O에 직접 열을 가하여 H₂O를 분해시키는 방법은 개념적으로 가장 간단한 방법이지만, 2300K 이상의 고온을 필요로 하기 때문에 실용화가 어렵다[9]. 그러므로 비교적 낮은 온도에서 H₂O분해를 통한 H₂제조를 위하여 다단계 열화학 사이클 연구가 진행되어지고 있다[10]. 다단계 열화학 사이클 방법 중 가장 실용화에 적합한 방법이 금속산화물을 이용한 2단계 열화학 사이클이다. 이 방법은 식 (1), (2)와 같이 금속 산화물 열에너지를 환원시키는 열적 활성화 단계와 환원된 금속 산화물을 산화시키는 H₂O분해 단계로 반응이 진행된다.

1st-step(T-R step): \[MxOy \to xM + y\text{O} \] \hspace{1cm} (1)
2nd-step(W-D step): \[xM + y\text{H}_2\text{O} \to MxOy + y\text{H}_2 \] \hspace{1cm} (2)
T-R: Thermal Reduction, W-D: Water Decomposition

여기서 M은 금속을 의미하고 MxOy는 금속 산화물이다.

현재 자성체료로 많이 사용되는 페라이트(Fe 산화물)는 산화-환원 반응 기 쉽게 일어난다는 장점을 가지고 있어 H₂O나 CO₂와 같은 안정한 물질의 분해 온도를 낮추려는 연구가 진행되었다[11~13]. 또한 페라이트의 산화-환원 반응성을 항상시키기 위하여 Fe²⁺ 대신 Zn, Mn, Cu, Ni과 같은 2가 양이온 금속을 치환시키거나, 미세 분말이나 다공성 페라이트를 제조하려는 연구가 활발히 진행되고 있다[14~20].

첫 번째, 흡열 단계(Thermal Reduction step: T-R step)는 금속산화물
2. 금속 산화물

2-1. 금속산화물의 성의

금속산화물(혹매)이라는 화학반응에 소량 첨가하여 열역학적으로 가능한 화학 반응을 가속시켜 주면서 그 자신은 변하지 않는 물질을 말하는 것이다. 금속 산화물의 가장 기본적인 기능은 첫째로 화학반응의 반응속도를 높이는 “활성”을 갖는 것이다. 두 번째의 기능은 특정한 반응만을 일으키는 “선택성”이다. 금속산화물을 사용하면 활성이 높아진다는 것은 금속 산화물이 사용한 반응은 사용하지 않은 반응에 비해 활성화 에너지가 작다는 것을 뜻한다. 같은 온도에서 활성화 에너지가 작다는 것은 동일 온도에서 반응속도가 빠르다는 것을 의미한다. 따라서 금속산화물을 사용할 경우 사용하지 않는 화학반응과 동일한 반응속도를 유지시키기 위해 필요한 반응온도를 크게 낮출 수 있게 된다. 즉, 금속 산화물을 사용한 반응은 에너지를 절약하고 부산물을 적게 생산하여 환경오염을 줄이는 효과가 있다. 반응물로부터 여러 생성물을 얻을 수 있는 가능한 여러 반응경로 중에서 원하는 특정 생성물이 얻어지는 반응경로의 활성화 에너지를 낮출 수 있는 금속산화물을 사용할 경우 특정 생성물을 위한 선택도(selectivity)를 높일 수 있다. 이처럼 금속산화물을 사용할 경우 화학반응의 전체 반응속도를 증가시킬 수도 있으며 혹은 특정 생성물의 선택도를 높일 수 있다.

본 실험에서는 고온을 필요로 하는 직접열분해 대신 직접열분해보다 더 낮은 온도로 수소를 생산하기 위해 금속산화물을 사용하였으며, 이를 통해 필요한 반응온도를 크게 낮출 수 있다.
2-2. 실험에 사용할 수 있는 금속 산화물의 선정

물을 분해하여 수소를 얻기 위해서는 고온의 환원열(>4300 K)이 필요하다. 그러나 현재의 기술로는 물의 직접 열분해에 필요한 고온을 얻기가 어렵다. 따라서 여러 범계체의 화학 반응을 통해 직접 물 분해에 필요한 고온의 온도를 저온 영역(<1300K)으로 분산시킬 수 있는 방법으로 열화학적 수소 제조 방법이 제안되었다. 또한 이런 열화학적 수소 제조의 열원으로 간헐적인 자연 에너지인 태양에너지지를 이용하기 위하여 금속산화물의 산화/환원 쌍을 이용한 열화학 2단계 수소 제조 방법이 제안되었다.

그러나 Fe₂O₃/FeO 산화-환원 쌍을 이용한 2단계 열화화 사이클은 적응 온도가 2500 K로 고온이고 FeO가 용융, 기화되어 이를 급행각 시켜야 하는 단점이 있다. 따라서, Fe₂O₃/FeO 쌍의 우수한 물 분해특성을 유지하고 고온의 환원 온도를 낮추기 위하여 환원 특성이 우수한 Ni, Mn, Zn, Co 등의 전이 원소로 Fe²⁺ 이온 일부를 치환시킨 금속 산화물에 대한 연구가 활발히 진행되었다.

MₓFeₓ₋ₓOₓ(M=2가 혹은 3가 금속이온)로 대표되는 금속함유 페라이트 (metal–bearing ferrite)에 대한 연구는 금속산화물의 환원온도를 1700 K이하로 낮추면서 물을 분리하여 수소를 생산할 수 있는 가능성 보여주었다.

또한, 금속 산화물의 소결을 유발하는 고온의 환원 온도는 비활성화를 야기 시켜, 반복 사이클에서 산화/환원 반응성을 감소시키는 문제를 해결하기 위해 시도로 Kodama 등은 열적으로 안정한 ZrO₂ 입자를 금속 산화물에 지지함으로써, 금속 산화물의 소결이 억제되고 비활성화가 서서히 진행됨을 보여주었다. 금속 이온이 치환되는 경우 큰 수의 산소 반자리가 형성되고, 이러한 특성에 따라 높은 산소 이동 및 산소 이온 전도성을 갖는다고 보고 하였다. 따라서, ZrO₂는 산화 환원 반응 중에 발생하는 금속 페라이트 입자 간 응집을 억제하여 반복 순환 반응에서의 내구성을 개선하고 또한 산소 및 산소 이온 전달 능력을 활용하여 산화 환원 반응 속도를 개선할 수 있다.
Table 1. Available metal oxides

<table>
<thead>
<tr>
<th>M</th>
<th>ΔH°°°(kJ/0.5molO₂)</th>
<th>ΔG°°°(kJ/0.5molO₂)</th>
<th>m.p of M(°C)</th>
<th>b.p of M(°C)</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni</td>
<td>244.3</td>
<td>216.3</td>
<td>1452</td>
<td>2900</td>
<td>carbide formation</td>
</tr>
<tr>
<td>Fe</td>
<td>270.4</td>
<td>248.4</td>
<td>1275~</td>
<td>1535</td>
<td>carbide formation</td>
</tr>
<tr>
<td>Sn</td>
<td>283.3</td>
<td>254.2</td>
<td>231.85</td>
<td>2260</td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>348.8</td>
<td>318.8</td>
<td>419.4</td>
<td>907</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>385.1</td>
<td>363.0</td>
<td>1200</td>
<td>1900</td>
<td>carbide formation</td>
</tr>
<tr>
<td>Sr</td>
<td>589.1</td>
<td>559.4</td>
<td>800</td>
<td>1150</td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>601.8</td>
<td>569.7</td>
<td>651</td>
<td>1110</td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>634.7</td>
<td>603.8</td>
<td>810</td>
<td>1200</td>
<td></td>
</tr>
</tbody>
</table>
Table 1. Available metal oxides

<table>
<thead>
<tr>
<th>Reduction reaction: $M_xO_y \rightarrow aMO + \frac{1}{2}O_2$ or $M_{x-x_o} + xO_2(x-1/2 \text{ or } 1)$</th>
<th>$\Delta H^\circ_{red}[\text{kJ/mol}]$</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Fe}_3\text{O}_4 \rightarrow \text{Fe}_2\text{O}_3 + \text{FeO}$</td>
<td>15.9</td>
<td></td>
</tr>
<tr>
<td>$\text{V}_2\text{O}_5 \rightarrow \text{V}_2\text{O}_4 + \frac{1}{2}O_2$</td>
<td>129.7</td>
<td>V_2O_5 is more stable than V_2O_4</td>
</tr>
<tr>
<td>$\text{MnO}_2 \rightarrow \text{MnO} + \frac{1}{2}O_2$</td>
<td>136.1</td>
<td>MnO is more stable than MnO_2</td>
</tr>
<tr>
<td>$\text{V}_2\text{O}_4 \rightarrow \text{V}_2\text{O}_3 + \frac{1}{2}O_2$</td>
<td>192.4</td>
<td></td>
</tr>
<tr>
<td>$\text{WO}_3 \rightarrow \text{WO}_2 + \frac{1}{2}O_2$</td>
<td>272.8</td>
<td></td>
</tr>
<tr>
<td>$\text{Fe}_3\text{O}_3 \rightarrow 2\text{FeO} + \frac{1}{2}O_2$</td>
<td>289.7</td>
<td>Fe_3O_3 is more stable than Fe_2O_4</td>
</tr>
<tr>
<td>$\text{SnO}_2 \rightarrow \text{SnO} + \frac{1}{2}O_2$</td>
<td>294.5</td>
<td>SnO_2 is more stable than SnO</td>
</tr>
<tr>
<td>$\text{Fe}_5\text{O}_4 \rightarrow 3\text{FeO} + \frac{1}{2}O_2$</td>
<td>305.6</td>
<td></td>
</tr>
</tbody>
</table>
2-2. 금속산화물의 제조 방식

금속 산화물을 만드는 방법 중의 하나로서 본 실험에 사용된 방법은 회전 코팅 방법이다. 이 방법은 코팅할 물질의 용액이나 액체물질을 기질위에 덤프하고 고속으로 회전시켜 얕게 빠져게 코팅을 하는 방법이다. 직경 80mm, 두께 20mm(또는 10mm, 15mm)의 MPSZ(MgO Partially-Stabilized Zirconia ceramic foam)을 페라이트 분말들이 들어있는 슬러리에 넣었다. 폰고 600rpm으로 회전을 시작 후 공기에서 100~1100℃의 온도로 하소를 시작한다. 이로 과정을 15분 반복 후 다시 절소에서 1100℃의 온도로 하소를 시키면 2단계 물-분해에 사용되는 NiFe₂O₄/m-ZrO₂/MPSZ 물-분해 금속산화물이 만들어진다. Fig. 1은 이런 회전 코팅 방법의 전체 프로세스를 나타내는 그림이다.
Fig. 1 Process of spin coat method
2-3. 실험에 사용된 금속산화물의 제원

Fig. 2는 실제 실험에 사용된 MPSZ(MgO Partially-Stabilized Zirconia ceramic foam)와 제조된 금속산화물의 사진이다. 총 3차 실험까지 3개의 금속산화물이 사용되었는데, 각각의 제원은 다음의 Table. 2에 나타났다. 본 연구에는 금속산화물의 NiFeO₄ 및 m-ZrO₂의 함유율 및 함유량을 조절하여 수소 생성량 및 소결 현상에 대한 변화를 연구하고 사이클 지속성에 대한 관계를 연구하였다.
<table>
<thead>
<tr>
<th>Device</th>
<th>1st device</th>
<th>2nd device</th>
<th>3rd device</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment period</td>
<td>2009.09</td>
<td>2009.10.11</td>
<td>2010.03</td>
</tr>
<tr>
<td>Diameter/mm</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Thickness/mm</td>
<td>20</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Cell number/cpi (cells per inch)</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Weight of the foam device before coating/g</td>
<td>102.3</td>
<td>53.9</td>
<td>82.4</td>
</tr>
<tr>
<td>Weight of the prepared foam device/g</td>
<td>144.8</td>
<td>80.6</td>
<td>124.0</td>
</tr>
<tr>
<td>NiFeO₃ loading of NiFeO₄/m-ZrO₂ particle / wt%</td>
<td>15</td>
<td>33</td>
<td>20</td>
</tr>
<tr>
<td>m-ZrO₂ content in NiFeO₄/m-ZrO₂ particle / wt%</td>
<td>85</td>
<td>67</td>
<td>80</td>
</tr>
<tr>
<td>NiFeO₃ loading amount on the foam device / g</td>
<td>6.2</td>
<td>8.6</td>
<td>8.8</td>
</tr>
<tr>
<td>m-ZrO₂ loading amount on the foam device / g</td>
<td>36.3</td>
<td>18.1</td>
<td>32.8</td>
</tr>
<tr>
<td>NiFeO₃ loading of the foam device / wt%</td>
<td>4.3</td>
<td>10.7</td>
<td>7.1</td>
</tr>
</tbody>
</table>

※ Powder coated on the foam device: NiFe₂O₄/m-ZrO₂
※ Foam matrix: MPSZ(MgO partially stabilized zirconia)
3. 실험장치 및 방법

3-1. 실험장치

3-1-1. 실험장치 구성

실험을 통해 검시형 고온 태양열 시스템을 이용한 금속산화물의 수소생산능력에 대해 알아보았다. 본 연구에서 사용된 검시형 고온 태양열 시스템은 Fig. 3과 같다. 또한 전체 시스템은 Fig. 4과 같이 구성하였다. 구성은 크게 센서 및 제어시스템, 고온 태양열 집열 시스템, 화학 반응기 시스템으로 나눌 수 있다. 센서 및 제어시스템을 통해 태양을 자동으로 2축 추적이 가능하고 수동으로 자세제어가 가능하다. 고온 태양열 집열 시스템은 95%의 고반사율 거울을 사용하여 시스템 효율을 높였다. 반응기의 금속산화물을 다공성 물질을 사용하여 작동유체와 접촉면적을 크게 하고 거주시간을 증가시켜 시스템 효율을 높였다.

시스템의 총 용량은 5 kW이며 포물선형 반사정 10개를 사용하였다. Table. 3은 시스템의 제품이다. 지면으로부터 중심까지 거리는 1.83 m이고, 최대높이는 4.11 m이다. 사용된 거울의 반사율은 95%이고, 거울의 직경은 3.2 m, 초점 거리는 2 m이다. 또한, 거울의 중면적은 5.90 m²이다. 모든 거울의 초점은 흡수기의 개구부 중앙과 일치한다. 현재 인천 송도신도시에 설치되어 가동 중에 있다.

Fig. 5는 직사일사량을 측정하기 위해 사용한 직사일사량계(pyrheliometer)이다. 미국 Eppley사에서 제작된 NIP(Normal Incidence Pyrheliometer) 센서와 태양을 자동으로 추적할 수 있는 ST-1 Solar tracker를 사용하였다.

Fig. 6는 검시형 고온 태양열 시스템 상단에 위치한 센서의 내부 구조를 나타내었다. 5개의 광센서(photodiode)를 사용하여 태양의 유무, 태양의 방위각 및 고도각 변화에 따른 태양의 위치를 판별하기 위한 센서이다. 센서 하우징 외부에 설치된 광센서 E는 태양이 일시적으로 구름에 가려있거나 또는 흐린 날씨를 판별하기 위한 것이며, 광센서 A와 B는 태양
방위각 변화에 따른 태양추적율, 광센서, C와 D는 태양 고도각 변화에 따른 태양추적율을 수행하기 위한 것이다.

태양센서의 의한 태양추적은 광센서 E에 입사되는 태양빛의 세기 (intensity)가 추적 조건에 적합할 경우, 태양추적용 광센서 A, B 및 C, D 를 사용하여 추적을 수행하며, 태양이 일시적으로 구름에 가려 있거나 하는 경우와 같이 광센서 E로부터 생성되는 신호가 추적조건을 충족시키지 못할 경우, 시스템을 추적해기모드로 전환시키며 추적을 중지시킨다[15].

Fig. 7은 화학 반응기의 외부 형상이다. 반응기의 외부 재질은 고온에 견딜 수 있는 Stainless 310S로 제작하였으며 반응기의 입구는 태양부서 열을 90% 이상을 흡수할 수 있도록 100㎜로 정하였다. 또한 반응기의 내부 열손실을 최대한으로 줄이기 위해 반응기 입구에 Fig. 8과 같이 투과 윤이 좋고, 고온에서 견딜 수 있는 절연유리(quartz window)를 설치하였 다. 그리고 반응기 내부를 저난소 gas와 화학 반응을 위해서 NiFeO₃로 이루어진 금속산화물을 넣었으며, 흡수기 외부 단열을 위해 Fig. 9와 같은 세라믹 섬유(thermal ceramic fiber)를 사용하였다.

Fig. 10은 실험에 사용한 steam generator로서 W-D단계에서 화학반응 기 내에 steam을 공급해주주는 장치이다. 항온조를 사용하여 항상 일정한 온도를 유지하였으며 실리콘 오일을 사용하여 물보다 더 높은 열전달 효과를 얻었다.

Fig. 11은 화학반응기의 출구 뿌레에 달려있는 chiller이다. 화학 반응기 내에서 화학반응 시 수소와 미치 반응하지 못한 steam이 같이 나오는 데 반응하지 못한 steam을 응축시켜 장치 내에 저장하고 일소와 수소 두 가지 가스만 가스 크로마토그래프에 넣을 수 있게 하는 장치이다.
3-1-2. 실험 방법

본 실험은 점시형 고온 태양열 시스템에 설치된 화학 반응기의 안쪽으로 carrier gas인 질소와 반응가스인 steam을 넣어 실험을 진행하였다. 선행되는 T-R 단계에서는 99.999%의 질소 가스가 유량계를 통해 반응기로 도달한다. 그리고 반응기 내에서는 고온으로 인한 환원반응이 진행 된다. T-R 단계가 종료되면 W-D 단계에 진입하면서, 질소 가스가 Steam Generator를 거쳐 스팀과 함께 반응기를 통과하면서 산화 반응을 일으킨다. 생성 가스는 water trap을 거치면서 steam이 풍족되어 빠져나가고 3 분마다 0.5ml설린지를 통해 포집된다. 포집된 가스는 크로마토그래피 (Agilent 7890A)를 통해 성분을 분석하였다. 실험은 T-R, W-D 단계를 하나의 사이클로 하여 반복하여 실험을 진행하였다. 점시형 고온 태양열 시스템을 이용한 화학 반응기 내의 금속 산화물의 성능을 분석하기 위해서는 금속산화물의 표면 온도 측정이 매우 중요하다. 따라서 금속산화물의 중심부와 바깥부분에 R-type 열전도를 2개, 그리고 반응기로 들어가는 입구 튜브와 출구 튜브에 각각 2개를 설치하여 온도를 측정하였다. 하루의 일사량 측정 또한 화학 반응부분에 있어서 매우 중요하다. 따라서 앞서 언급한 직단일사량계를 정남쪽에 위치시키, 일출 시간부터 일몰 시간까지의 일사량을 측정하였다. Fig. 12는 이 실험에 대한 전체적인 절차를 나타낸 그림이다.
3-2. Flux mapping

Flux mapping 실험이란 접시형 고온 태양열 시스템의 초점 지역에서의 플러스 분포를 촬영하여 그 이미지를 분석함으로써 반사된 태양 복사 에너지의 분포를 해석하는 실험이다. 접시형 고온 태양열 시스템은 고온에서 작동되기 때문에 반사영의 영역에 큰 영향을 미친다. 반응기의 입구가 너무 크게 설계가 되면 많은 열손실이 발생하며, 반대로 너무 작게 설계가 된다면 접촉에 들어오는 빛을 다 받아들이지 못하여 성능이 저하될 수 있다. 따라서 접시형 고온 태양열 시스템에서의 반응기 입구의 설계는 매우 중요하다.

시스템 제어에 의하여 접열기의 중심으로부터 2m 인 초점거리에 반사 타겟을 설치하였다. 반사 타겟으로부터 약 1.2m 전방에 CCD 카메라를 설치하였다. Fig. 13은 실험이 사용된 수방식 반사 타겟이다. Fig. 14는 반사판에서 반사된 빛이 모이는 초점단위를 촬영한 사진이다. 반사 타겟에서 빛의 반사가 균일하게 이루어지도록 하기 위하여 표면에 600~900°C 까지 견딜 수 있는 백색 Super Therm 페이нт로 도포하였다. 열에 페이트가 녹는 것을 방지하기 위하여 물로 방각할 수 있게 반사 타겟을 설계하였다. 가운데 검은점은 플러스 분포를 측정하기 위해 설치한 radiometer이다. Fig. 15는 촬영한 이미지에서 플러스 분포를 해석하기 위해 사용한 IDL 프로그램 실행 모습이다. Fig. 16는 초점단위 전위 분포의 중심에서부터 형성되는 총에너지의 비율을 나타낸 그림이다. 이 결과를 통하여 반응기 입구의 크기를 결정할 수 있다. 따라서 실험이 의하여 태양열 접열기의 초점단위 전위 분포에 의해 반응기의 입구는 태양복사열을 90% 이상 흡수할 수 있도록 0.1m로 정하였다.
Fig. 2 (a) M.P.S.Z.
(MgO-partially-stabilized Zirconia foam)

Fig. 2 (b) Metal Oxide
Fig. 3 Dish solar thermal system
Fig. 4 Schematic diagram of system
Table 3. Specifications of the dish system

<table>
<thead>
<tr>
<th>Specification</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>From ground to center</td>
<td>1.83 m</td>
</tr>
<tr>
<td>Maximum height</td>
<td>4.11 m</td>
</tr>
<tr>
<td>Reflectivity of reflector</td>
<td>Above 95%</td>
</tr>
<tr>
<td>Diameter of reflector</td>
<td>3.2 m</td>
</tr>
<tr>
<td>Focal length</td>
<td>2 m</td>
</tr>
<tr>
<td>Total area of reflectors</td>
<td>5.90 m²</td>
</tr>
<tr>
<td>Rim angle</td>
<td>43.85°</td>
</tr>
</tbody>
</table>
Fig. 5 Pyrheliometer (NIP & ST-1)

Fig. 6 Solar sensor
Fig. 7 Outer shape of the reactor
Fig. 8 Quartz window

Fig. 9 Thermal ceramic fiber
고온 태양열을 이용한 2단계 물-분해 화학반응기의 사이클 연구

Fig. 10 Steam generator
고온 태양열을 이용한 2단계 물-분해 화학반응기의 사이클 연구

Fig. 11 Chiller
Fig. 12 Overall process of two-step water splitting
Fig. 13 Target with cooling system

Fig. 14 Focusing image
Fig. 15 IDL image analysis

Fig. 16 Total energy percentage from center
4. 실험 결과

4-1. 1차 금속 산화물을 이용한 실험에 대한 금속 산화물의 수소 생산량 및 사이클 반복성

Fig. 17는 실험 시 측정된 일사량과 금속산화물의 표면온도에 대한 그래프이다. 일사량이 일정치 않게 측정이 되지 않은 이유는 태양이 구름에 가려거나 집열 시스템의 초점이 벗어났기 때문이다. 또한 금속 산화물의 중심부와 바깥부분의 온도가 차이가 나는 이유는 집열 시스템의 초점의 온도가 중심부가 더 높은데 이유가 있다. 이때의 사이클 반복수는 1회에 한하였다. 이는 T-R 단계에서의 지속 시간에 걸려서 금속산화물이 손상이 되었기 때문이다. 실험을 처음 시작하였을 때 금속산화물의 안정성 및 수소 생산성을 실험해보기 위하여 충분한 T-R단계의 시간을 가졌는데 이 단계의 시간이 너무 길어서 금속산화물이 소결 현상 및 균열을 일으켰기 때문에 사이클은 1회밖에 수행하지 못했다. Fig. 18는 1회 사이클 반복 후에 나타난 금속 산화물이 사진이다. 또한 Fig. 19에서 quartz window에 금속산화물의 기화의 혼적이 나타났다. 이로 인해 수소의 생산량은 12.13ml로 매우 미량으로 나타났으며 수소의 생산량을 Fig. 20에서 그래프로 나타내었다.
4-2. 2차 금속 산화물을 이용한 실험에 대한 금속 산화물의 수소 생산량 및 사이클 반복성

2차 실험은 1차 실험 대비 사이클 반복이 1회가 많은 2회로 이루어졌다. 1차 실험의 경험을 바탕으로 수소 생산량을 늘리기 위해 금속산화물 제작시 NiFeO₃의 성분을 크게 늘려주었다. 1회 사이클 반복 후 금속산화물 및 화학 반응기를 살펴본 결과 크게 이상이 생기지 않았으며, 일사량 대비 전체적인 온도 분포 또한 실험에 이상적으로 나타났다. 2회 사이클 반복 후 금속산화물 및 화학 반응기를 살펴 본 결과 Fig 21와 같이 소결현상이 일어 남으로서 다시금 수소 생산량 및 사이클 반복 성능에 영향을 미치게 되었다. Fig 22, 23은 1회 및 2회 사이클 수행 시 일사량 및 금속산화물의 표면온도를 그래프로 나타낸 그래프로서 전체적으로 T-R단계와 W-D단계의 구분이 명확하게 이루어졌으며 1차 실험 때보다 많은 1회 많은 총 2회의 사이클 반복이 이루어졌으며 1회에는 782.87ml, 2회에는 48.71ml로 보다 많은 수소 생산이 이루어졌다. 하지만 두 번째 사이클에서는 수소의 생산량이 급격하게 줄어들었는데 이는 m-ZrO₂의 함유량을 줄여 생긴 소결현상이 원인이 되었다. Fig. 24, 25은 2차 실험에 대한 수소 생산량을 그래프로 나타낸 그림이다.
4-3. 3차 금속 산화물을 이용한 실험에 대한 금속 산화물의 수소 생성성 및 사이클 반복성

본 연구에 대한 3차 실험은 2010년 3월에 수행하였다. 3차 실험은 2차 실험 대비 사이클 반복이 3회가 많은 총 5회로 이루어졌다. 2차 실험의 경향을 바탕으로 사이클 반복수를 늘리기 위해 금속산화물 제작 시 m-ZrO₂의 성분에 변화를 주었으며, 화학 반응기 내로 들어가는 절소가스의 유량을 5L/min에서 4L/min으로 줄여 W-D step시 수소 측정을 더 자세하게 하였다. 5회의 사이클 반복 후 금속산화물 및 화학 반응기를 살펴 결과 균열이나 소결 현상 등이 생기지 않았으며, 5회 사이클 반복시를 제외한 나머지 사이클에서는 일사량 대비 전체적인 온도 분포 또한 실험에 이상적으로 나타났다. 5회 사이클에서는 헤가 자주 구름에 가리면서 금속 산화물의 표면온도가 일정하게 유지되지 않았음을 볼 수 있다. Fig. 26~30은 각 사이클에 대한 일사량 및 금속산화물의 표면온도이며 Fig. 31~35은 각 사이클에 대한 수소생산량을 나타낸 그래프이다.
Fig. 17 Insolation and metal oxide surface temperature of the first experiment
Fig. 18 Metal oxide shape after the first experiment
Fig. 19 Quart window shape after the first experiment
Fig. 20 Amount of hydrogen production of the first experiment (12.13 ml)

Fig. 21 Sintering phenomenon after the first experiment
Fig. 22 Insolation and metal oxide surface temperature of the first cycle of the second experiment
Fig. 23 Insolation and metal oxide surface temperature of the second cycle of the second experiment
Fig. 24 Amount of hydrogen production of the first cycle of the second experiment (782.87 ml)

Fig. 25 Amount of hydrogen production of the second cycle of the second experiment (48.71 ml)
Fig. 26 Insolation and metal oxide surface temperature of the first cycle of the third experiment
Fig. 27 Insolation and metal oxide surface temperature of the second cycle of the third experiment
Fig. 28 Insolation and metal oxide surface temperature of the third cycle of the third experiment
Fig. 29 Insolation and metal oxide surface temperature of the fourth cycle of the third experiment
Fig. 30 Insolation and metal oxide surface temperature of the fifth cycle of the third experiment
Fig. 31 Amount of hydrogen production of the first cycle of the third experiment (267.70 ml)

Fig. 32 Amount of hydrogen production of the second cycle of the third experiment (307.10 ml)
Fig. 33 Amount of hydrogen production of the third cycle of the third experiment (167.53 ml)

Fig. 34 Amount of hydrogen production of the fourth cycle of the third experiment (80.29 ml)
Fig. 35 Amount of hydrogen production of the fifth cycle of the third experiment (40.14 ml)
5. 결 론

고온 태양열을 이용한 화학 반응 사이클의 수소 생산성 및 지속성을 능
리기 위해 금속 산화물의 NiFeO₃ 및 ZrO₂의 함수율 및 함수량을 바꿔 연구
를 수행하였다.

1. Flux mapping 실험에 의해 화학반응기의 입구는 태양복사열을 90% 이상 흡수할 수 있도록 원 형태로 지름을 0.1m로 정하였다.

2. 일사량이 증가함에 따라 금속 산화물의 표면 온도가 급격히 증가하
여 순상이 일어나기 때문에 원활한 실험 진행을 위해서 T-R단계는 1400
~ 1500°C의 온도를 맞춰 주는 것이 중요하고 W-D단계는 1100 ~ 1200°C의
온도를 맞춰 주는 것이 중요하다.

3. T-R단계는 금속산화물의 표면온도에 따라 실험 시간이 다르지만
1400°C를 만족한다면 약 20 ~ 25분정도의 시간이 적당하다.

4. Stainless 310S는 1500°C이상을 견딜 수 있는 금속으로 이외의 금속
(ex. Stainless 304)을 반응기 케이스에 사용한다면 반응기 내 알루미나와
금속간의 열 변화 차이 때문에 석영 유리 및 알루미나에 균열이 생긴다.

5. ZrO₂는 산화 환원 반응 중에 발생하는 금속 페라이트 임자간 응집을 억
제하여 반복 순환 반응에서의 내구성을 개선하고 또한 산소 및 산소 이온
전달 능력을 활용하여 산화 환원 반응 속도를 개선할 수 있다.

6. 금속산화물의 NiFeO₃ 함수율이 높으면 생산되는 수소의 양이 많아지거나
전체적으로는 ZrO₂의 함수율이 작아져 금속산화물의 소결현상 및 열에 의한
균열 현상이 일어나게 된다. 두 번째 실험에서는 첫 번째 실험보다 많은 수
소를 생산시키기 위해 NiFeO₃ 함수율을 높였다. 그 결과 더 많은 수소 생산이
일어났지만 금속산화물의 소결과 균열로 인해 더 많은 사이클을 수행하는
못하였다.

7. 금속산화물 내의 ZrO₂의 함수율을 증가시키면 고온에서의 금속산화물의
소결현상에 대한 저항성이 생겨 사이클 지속을 반복할 수 있다. 세 번째
실험에서는 금속산화물 내의 ZrO₂의 함수율 및 함수량을 증가시킨 결과 두
반체 실험대비 더 많은 사이클을 실시할 수 있었다.

8. 화학 반응 사이클의 지속성 연구에 대한 실험을 할 경우에는 날씨가 중요한 인자로 작용하게 된다. 따라서 가급적이면 정교한 날씨 조건 하에서 장시간 실험을 실시하여 안정적인 데이터를 얻는 것이 중요하다.
참고문헌

2. 산업자원부, 에너지정책 성과분석 및 향후 전략에 관한 보고서, 산업자원부, 2006.5.

9. Fletcher, E.A., Moen, R.L., Hydrogen and Oxygen from Water,
16. 신현창, 정광덕, 한성환, 최승철, 페라이트를 이용한 H₂O 분해를 통한 수소제조, J. of the Korea Ceramic Society, vol.37, no.1, pp.90–95, 2000
19. Y. Tamaura, N. Kojima, N. Hasegawa, M. Inoue, R. Uehara, N.

