저온분사 코팅공정시 광폭노즐 형상에 따른 노즐 내 유동장 특성 해석

Flow Field of Supersonic Silt Nozzle during Cold Spray Process

2011년 2월

仁荷大學校 大學院

金屬工學科

朴 惠 暄
저온분사 코팅공정시 광폭노즐 형상에 따른 노즐 내 유동장 특성 해석

Flow Field of Supersonic Silt Nozzle during Cold Spray Process

2011년 2월

指導教授 韓 晶 煥

이 논문은 碩士學位 論文으로 提出함
이 논문을 朴惠喫의 碩師學位論文으로 認定함

2011年 02月

主審 金 睦 淳

副審 韓 晶 換

委員 俞 炳 敦
목차

Table List .. iii

Figure List ... iv

국문요약 .. vi

Abstract ... vii

제 1장 서론 ... 1
 1절. 연구 개발의 배경 .. 1
 2절. 저온 분사의 정의 및 특징 ... 2
 3절. 연구 개발의 목적 .. 4
 4절. 연구의 내용 .. 4

제 2장 이론적 배경 .. 6
 1절. 압축성 유동의 개념 .. 6
 2절. 음속과 마하수 .. 10
 3절. Shock wave .. 12
 4절. 준일차원 유동 ... 15
 5절. Nozzle flow .. 25
 6절. Particle tracking ... 28

제 3장 수치기법 ... 32
 1절. 지배미분방정식 ... 32
 2절. 이산화 방법 ... 35
 3절. 해석 기법 ... 38
제 4장 수치해석방법 ... 43
 1절. 수치해석 장단점 및 순서 ... 43
 2절. Mesh generation .. 44
 3절. 경계 조건 ... 45

제 5장 해석 결과 및 고찰 .. 46
 1절. 기본 조건에 대한 유동장 해석 ... 46
 2절. 형상 조건에 따른 노즐 내 기스 유동장 해석 50
 3절. 형상 조건에 따른 입자 속도 분포 해석 53

제 6장 결론 .. 61

제 7장 참고문헌 .. 63
Table List

Table 1. Merits and demerits of experimental method and numerical method
Table 2. Boundary condition of gas and particle
Table 3. Parameter of variation nozzle condition
Figure List

Fig. 1 Configuration of the cold spray apparatus.

Fig. 2 A stationary sound wave in a moving gas; the upstream velocity relative to the wave is a.

Fig. 3 Sketch of a normal shock wave.

Fig. 4 Sketch of an oblique shock wave.

Fig. 5 Supersonic flow over a corner.

Fig. 6 The comparison between one-dimensional flow and quasi-one dimensional flow.

Fig. 7 Control volume on quasi-one dimensional flow.

Fig. 8 Infinitesimal volume.

Fig. 9 The flow in cross-sectional convergent and divergent tube.

Fig. 10 The flow in cross-sectional convergent-divergent tube.

Fig. 11 The condition of sonic properties.

Fig. 12 The geometric shape for inducing area–Mach number relationship.

Fig. 13 Cross-sectional area vs pressure ratio required for a given mass flow rate.

Fig. 14 Finite volume cell with area vector.

Fig. 15 Lattice of PHOENICS

Fig. 16 Schematic diagram of nozzle geometry.

Fig. 17 Gas velocity distribution of circle nozzle and slit nozzle

(a) the gas spraying at vertical plane and horizontal plane,

(b) gas spraying at 50 mm from nozzle exit

Fig. 18 Analysis of circle nozzle and slit nozzle (a) the particle
spraying, (b) particle distribution at 50 mm from nozzle exit

Fig. 19 Analyze spraying plane for circle nozzle and slit nozzle
 (a) spraying efficiency (b) efficiency area

Fig. 20 Analysis of distance exit to substrate at standard nozzle
 (a) particle velocity distribution, (b) spray efficiency

Fig. 21 Analysis of gas velocity and gas temperature for (a)
 variation of nozzle neck area (b) variation of nozzle exit area

Fig. 22 Analysis of gas velocity and gas temperature for (a)
 variation of nozzle neck shape (b) variation of nozzle exit shape

Fig. 23 Analyze spraying plane for variation of nozzle neck area
 (a) spraying efficiency (b) efficiency area

Fig. 24 Analyze spraying plane for variation of nozzle exit area
 (a) spraying efficiency (b) efficiency area

Fig. 25 Analyze spraying plane for variation of nozzle neck shape
 (a) spraying efficiency (b) efficiency area

Fig. 26 Analyze spraying plane for variation of nozzle exit shape
 (a) spraying efficiency (b) efficiency area
저온분사 코팅공정은 고속으로 가속된 금속질의 입자를 기판 표면에 충돌시 소성변형을 일으켜 적층되는 기술이다. 이 공정의 장점은 운동에너지를 주로 사용하기 때문에 기판과 입자간의 열응력을 감소시킬 수 있고 기판의 예열을 최소화할 수 있으며 폭발의 위협성이 있는 가연가스를 사용하지 않기 때문에 작업의 안전성을 향상시킬 수 있다. 저온분사 공정에서는 주로 원형 노즐을 사용하였으나 분사 효율 저하의 단점이 있었다. 이러한 단점을 보완하기 위하여 본 연구에서는 분사 효율 향상을 위한 광폭노즐을 사용하여 코팅시간 단축을 기대하고 있다. 따라서 본 연구에서는 광폭노즐의 분사 효율을 나타내기 위하여 원형 노즐과 광폭노즐의 입자속도를 비교하였고, 입계속도 이상의 입자 확보를 위하여 노즐의 expansion ratio와 노즐 shape의 변화를 주어 그에 따른 노즐내외의 유동장을 수치해석을 통해 계산하였다. 분사되는 출구면과 기판 사이의 입자속도 및 온도 분포를 해석하였고, 이를 통해 입계속도 이상의 속도를 갖는 유효 입자들의 분포 및 유효 분사 면적이 예측하였다. 또한, 기존의 원형 노즐과 광폭 노즐과의 유동장 비교 및 각 노즐 분사면을 분석하여 cold spray coating 공정에서 효율적인 노즐 형상을 디자인하였다. 분석 결과, 분사 효율을 비교하였을 때 expansion ratio가 7.5일 때 가장 우수한 분사 효율을 보였고 노즐 모 형상을 비교하였을 때 정사각형 노즐 모양이 가장 우수한 특성을 보였으며, 노즐 출구 형상을 비교하였을 경우 슬릿 노즐 형상에 가까울수록 우수한 입자 분사특성을 나타내었다. 또한 원형과 슬릿 노즐의 분사 특성을 비교할 시 원형 노즐에 비해 슬릿 노즐이 더 우수한 분사특성을 나타내었다.
Abstract

A cold spray process is an emerging technology that utilizes high velocity metallic particles for surface modification. Metallic powder particles are injected into a converging-diverging de Laval nozzle and accelerated to a high velocity by a supersonic gas flow. The gas velocity increases in the nozzle neck reaching a maximum at the nozzle exit. A cold spray process normally uses a circular nozzle, but a circular nozzle has a rather narrow spraying range though high gas velocity. To complement this fault, a slit nozzle was considered in this study. A slit nozzle is anticipated to reduce the coating process time because the nozzle has a wider coating width than a circular nozzle. However, the slit nozzle can reduce the coating efficiency because it does not allow as much gas or particle velocity as a circular nozzle. Improving the slit nozzle coating efficiency requires revising the nozzle size and shape, a numerical analysis of the nozzle's flow field and a comparison of the spraying properties of each nozzle. Analysis results show that comparing the spraying efficiency caused by nozzle configurations an improvement was shown at the expansion ratio of 7.5. When exploring the variances according to the nozzle shape, a greater performance was observed using square nozzle necks and a narrower slit nozzle shape at the exit plane. In addition, the slit nozzle showed greater performance in the particle velocity distribution than the circle nozzle.
제 1 장 서론

1-1 연구 개발의 배경

소재관련 핵심연구 분야는 환경적 요인에 대한 내구성 있는 소재의 필요성 및 유해한 환경오염을 최소화 할 수 있는 산업을 만드는 데에 있다. 이러한 상황에 표면처리 기술은 소재의 물리적, 화학적 및 기계적인 내구성을 가지는데 적합하고, 그 중에서 thermal spray 코팅기술은 타 공정이 가지는 공정 환경의 제한성이이나, 적용 소재의 제한성에서 매우 우수한 공정으로서 산업분야에 적용할 수 있는 기술이라 할 수 있다. 그러나 thermal spray 공정은 높은 열을 동반하게 되므로, 상대적으로 차가운 모재와 충돌되는 과정에서 응력이 발생하게 되고, 이것은 코팅 공정중의 코팅의 벗리나 결함조직의 증가에 따른 코팅특성 저하를 유발하게 된다. 그래서 최근에 cold spray 코팅 기술이 나타나게 되었다. 이 기술은 thermal spray 공정이 분말을 코팅하는데 열과 운동 에너지를 동시에 사용하는 반면에, 상온에 가까운 낮은 온도의 고속 가스를 이용한 운동 에너지만을 이용한다. 즉, 이 기술은 소재 분말을 고온으로 용융시키지 않고 고상 상태에서 이루어지는 공정이므로 기존의 thermal spray의 단점인 모재의 열적 제한성, 코팅입자의 공정 중 산화, 상변화 및 전류응력의 형성과 같은 문제점을 극복 할 수 있는 많은 장점을 지니게 된다. 이러한 특성으로 인해, 나노 분말이나 비정질 분말을 코팅하거나, 열적으로 민감한 Ti이나 Cu 같은 소재에 쓰이기에도 적합한 공정이라 할 수 있다.

1-2 저온 분사의 정의 및 특징
다. 그렇지만 가스가 팽창하고 노즐의 여러 갈래로 나뉘는 부분에서 가속되어지며 따라 급속히 냉각한다. 그러므로 가열된 가스와 함께 접촉되어 있는 고체분말의 체류시간이 매우 중요하다. 이와 같은 상호 교환은 cold spray 노즐의 팽창된 부분에서 나타난다. 2-5)

가스가 팽창하기 때문에 분말의 밀도는 감소하고 분말의 속도는 증가한다. 가스 속도가 증가하고 가스 밀도가 감소하는 대조적인 효과는 다음과 같은 홍미로운 결과를 산출했다. Cold spray에서 분말 속도는 스프레이는 노즐의 여러 갈래로 나뉘는 부분의 정확한 내부 결합구조에 크게 민감하지 않다는 것이다. 그러므로 한 개의 노즐의 설계는 재료의 높은 범위에 걸쳐 효과적으로 사용되어 질 수 있다. Cold spray 과정에서 입구의 가스 압력은 일반적으로 1.5~3.0MPa의 범위로 떨어진다. 입구가스 압력은 가스 속도에 영향을 끼치지 않는 다. 그렇지만 입구 가스 압력이 증가하는 것은 가스 밀도를 증가시키고 따라서 보다 더 나은 분자의 결합을 제공하고 최초의 분자 가속을 증가시킨다.

![Diagram of cold spray apparatus](image)

Fig. 1 Configuration of the cold spray apparatus.

1-3 연구 개발의 목적
저온분사 코팅 공정은 1980년대 중반 러시아의 Papyrin에 의해 개발된 이후, 열 용사 코팅 공정에 비해 낮은 진류응력과 고순도 코팅, 우수한 접합강도, 열 용사에서 어려웠던 미립상, 금속간 화합물, 비정질 소재의 코팅이 용이하다는 장점으로 많은 관심을 받고 있다. 이러한 저온분사 코팅 공정은 그림 1과 같이 초음속 가스 유동장 내에 비행입자를 주입하여, 비행입자가 가스 유동장에서 운동에 따른 열에너지와 열에너지의 양을 유입과 기판이 충돌 시 소성변형을 일으켜 적층되는 기술이다. 이때 비행입자가 기판에 충돌하여 적층될 수 있는 최소한의 속도를 임계속도(critical velocity)라 하며 Assadi 등은 저온분사 코팅 공정에서 일정속도 이상의 입자기 기판에 적층되는 현상을 통해 입자의 임계속도 식을 제안하였다. 저온분사 코팅 공정은 가스와 입자의 운동에너지와 이어 코팅 기술이기 때문에, 효율적인 코팅을 위해 임계속도가 반드시 확보되어야 하고 이를 위한 연구가 필요하다.

1-4 연구의 내용

기존의 저온분사 코팅 공정시 주로 사용하였던 원형노즐 대신 코팅 폭이 큰 슬릿노즐을 사용할 경우, 공정시간을 단축하여 좀 더 효율적인 공정이 될 것으로 기대되고 있다. 그러나 슬릿노즐은 출구의 비대칭적인 형상으로 인하여 원형노즐에 비해 충분한 속도를 내지 못하고 분사효율이 저하되는 단점이 있다. 따라서 이번 연구에서는 이러한 슬릿노즐의 단점을 보완하여 코팅 공정에서 분사효율을 향상시키고자, 압축가스가 평창하는 부분인 노즐목과 출구의 Expansion Ratio(E.R) 변화 및 노즐목의 형상 변화를 통해 노즐 내 및 출구 주위에서의 유동장을 해석하고 적층 슬릿노즐 디자인을 도출하였다. 또한 기존의 원형노즐과 슬릿노즐의 입자의 속도비교를
통해 입자의 분사효율을 비교하였다.
제 2 장 이론적 배경

2-1. 압축성 유동의 개념

Nozzle의 압력, 속도 및 형상에 대한 정량적인 유동장을 해석하기 위해서는 우선 유체의 특성을 파악하는 것이 선행되어야 한다. 균질한 유체의 유동에서 밀도가 변하지 않고 일정한 유동을 비압축성 유동이라고 정의하며, 이에 반하여 압축성 유동은 밀도가 일정하지 않고 변하는 유체의 유동으로 정의한다. 실제의 유동에 있어서는 모든 유체가 정도의 차이는 있지만 어느 정도의 압축성이 다 갖고 있으므로 엄밀한 의미에서의 비압축성 유동은 존재하지 않는다. 그러나 거의 모든 액체는 물론 기체도 어느 정도의 조건하에서는 밀도의 변화가 매우 작으므로 밀도의 변화를 무시하여 비압축성 유동으로 가정하여도 무방한 경우가 있다. 유체의 압축성 계수(coefficient of compressibility) κ는 다음과 같이 정의한다.

$$\kappa = -\frac{1}{V}\frac{dV}{dp}$$

물리적으로 압축성계수 κ는 단위압력변화에 대한 유체요소(fluid element)의 체적 변화의 비율을 의미한다. 기체가 압축될 때 열이 계속 들어오거나 나가지 않기 때문에 기체의 운도가 변함으로서 (2-1)은 유체의 압축성을 나타내는데 완전히 못하다. 그러므로 어떤 열전달 방법에 의해 계의 운도를 일정하게 유지하면서 압축성 계수를 측정할 수가 있는데 이를 동등압축계수 κ_T라 하며 다음과 같이 정의한 다.

$$\kappa_T = -\frac{1}{V}\left(\frac{dV}{dp}\right)_T$$

액체는 매우 작은 값의 압축성 계수(1기압에서의 물 : κ)
\(t = 5 \times 10^{-10} \text{m}^2/\text{N} \)을 가지며, 기체는 매우 큰 값의 압축성 계수(1기압에서의 공기: \(\kappa_T = 10^{-5} \text{m}^2/\text{N} \))를 가진다. 그러므로 같은 크기의 압력이 작용했을 때 기체는 액체보다 훨씬 쉽게 압축될 수 있다는 것을 알 수 있다. 단열 유체의 체적 \(V \)을 단위질량을 가지는 유체요소로 생각하여 체적을 비체적\((\text{specific volume}) \upsilon \)로 하여 식\((2-1)\)을 밀도항으로 표시하여 나타내면 식\((2-3)\)과 같이 된다.

\[
\kappa = - \frac{1}{\upsilon} \left(\frac{d\upsilon}{dp} \right) = \frac{1}{\rho} \frac{d\rho}{dp} \quad (2-3)
\]

where, \(\rho = \frac{1}{\upsilon} \), 식\((2-3)\)을 정리하면,

\[
d\rho = \rho \kappa dp \quad (2-4)
\]

식\((2-4)\)으로부터 유체의 압력이 변화하면 유체의 밀도가 변하는 것을 알 수 있다. 유체의 유동은 압력구배를 구동력으로 이루어진다. 특히 고속유동\((\text{high speed flow})\)은 매우 큰 압력구배\(\)단위길이당 압력차이\)가 나타난다. 주어진 압력차이 \(dp \) 즉 같은 압력차이에 대하여 식\((2-4)\)는 액체의 경우 압축성 계수가 작은 값을 가지므로 작은 밀도변화 \(dp \)를 가져오고 기체의 경우 큰 값의 압축성 계수를 가지므로 큰 밀도변화 \(dp \)를 가져올 것을 보여준다. 그러므로 액체유동에 있어서는 큰 압력차이에 의하여 빠른 유동이 밀도의 큰 변화 없이 이루어지므로 일반적으로 액체유동을 비압축성 유동으로 가정해도 큰 오차는 없다. 반면에 큰 값의 압축성 계수를 갖는 기체유동에 있어서는 압력구배가 별로 크지 않더라도 매우 빠른 유동이 이루어짐과 동시에 식\((2-4)\)에 의해서 상당한 밀도변화가 일어나므로 비압축성 유동으로 간주할 수 없고, 압축성 유동으로 고려하지 않으면 안된다.

저속유동의 가스의 경우 전 유동장을 통한 압력변화의 실제적인 양은 적다. 따라서 압축성 계수\(\kappa \)의 값이 크더라도 \(dp \)의 값은 작은 \(dp \)에 의해 지배되어질 수 있으므로 \(\rho \)의 값은 상수로 가정되어질 수
있다. 그러므로 저속유동의 가스의 경우는 비압축성 유동으로 간주
할 수 있다. 예를 들면, 가스의 경우 60.96 m/s에 근접한 속도로
움직이는 경우가 비압축성 유체로 다루어지고, 304.8 m/s에 근접한
속도로 움직이는 경우는 압축성 유체로 다루어진다. 일반적으로 실
제 문제에서 밀도변화비가 5%이상일 때의 유동을 압축성 유동으로
고려한다. 6)

2-2. 음속과 마하수

음속은 압축성 유체의 물리적 특성을 지배하는 매우 중요한 양이
다. 기체내부의 음전파의 물리적 기구는 분자들의 운동에 기초한다.
우리 주위의 공기는 매우 낮은 속도와 에너지를 가지고 끊임없이
움직이고 있는 분자들로 구성되어 있다. 에너지를 가진 분자들이
무작위한 방향으로 움직이고 결국 이웃분자들과 충돌하여 에너지를
전달한다. 이 에너지는 분자간의 충돌에 의하여 전달되기 때문에 에
너지파는 분명히 공기분자의 평균속도와 관련 있는 속도로 공기 중
을 전파할 것이다. 파는 에너지의 증가, 즉 약간의 압력(밀도, 온도
등) 변화를 일으킨다. 이런 약한파는 음파라고 정의한다. 기체 속을
어떤 속도 a로 전파하는 음파를 생각하자. 그림 2는 이러한 음파의
개략도를 나타낸다. 공기가 파를 통과한 뒤에는 유동성질들의 변화
가 있기 때문에 파 뒤의 유동은 약간 다른 속도로 움직인다. 음파는
파를 전한 유동성질들의 차이가 미소한 약파(weak wave)로 정의
된다. 음파를 전한 속도의 변화는 미소량 da로 가정할 수 있다.
음파 전방의 공기는 압력, 밀도, 온도가 각각 p, ρ, T로서 속도 a로
정지된 파를 향하여 운동하고 파 후방의 공기는 압력, 밀도, 온도가
각각 p+dp, ρ+dp, T+dT로 변하여 속도 a+da로 정지된 파로부터 멀
어진다.
Fig. 2 A stationary sound wave in a moving gas; the upstream velocity relative to the wave is \(a\).

\[
\begin{align*}
\rho & \quad \rightarrow \quad \rho + d\rho \\
T & \quad \rightarrow \quad T + dT \\
\rho & \quad \rightarrow \quad \rho + d\rho \\
a & \quad \rightarrow \quad a + da
\end{align*}
\]

The equation for a stationary sound wave in a moving gas is:

\[a^2 = \frac{dp}{d\rho}\] (2-5)

The equation for the downstream pressure change is:

\[a^2 = \left(\frac{dp}{d\rho}\right)_s\] (2-6)

Equation (2-6) is a basic equation used in the analysis of wave propagation in a gas. This equation is derived from the ideal gas law and the equation of state for a perfect gas.
유도할 수 있다.

\[a = \sqrt{\gamma RT} \]

식(2-6)은 일반기체의 음속의 관계식이고 식(2-7)는 완전기체일 때 식(2-6)을 간단히 표현한 식이다. 식(2-7)에서 보듯이 완전기체내의 음속은 온도만의 함수이며 온도의 제곱근에 비례한다는 것을 알 수 있다.

한편 어떤 기체의 유동이 비압축성 또는 압축성인지지를 판단할 수 있는 척도로 사용되는 가장 편리한 지표로 마하수(Mach number, M)를 정의하면 식(2-8)과 같이 나타낼 수 있다.

\[M = \frac{a}{V} \]

여기서 \(V \)는 어떤 점에서의 유속이며, \(a \)는 그 점에서의 음속이다. 곳에 따라 유속과 음속이 변하므로 \(M \)도 곳에 따라 다른 값을 갖는다.

2-3. Shock wave and energy loss

2-3-1. Normal shock wave

초음속유동의 일부로서 반복히 나타나는 현상인 수직충격파는 호름방향에 수직인 충격파를 나타낸다. 그림 3는 수직충격파의 개략도를 나타낸다.

이 충격파의 두께는 표준상태 하에서 공기분자간의 평균자유행로(molecular mean free path)의 크기로 약 10^{-5} cm정도로 매우 얇은 영역이다. 초음속 유동이 수직 충격파를 지나가 되면 유동의 물리적 성질이 급격히 변화하는 현상이 나타난다. 그림 3에서처럼 충격파의 전방은 초음속이고 후방은 아음속이다. 또한 압력 및 온도, 밀도는
충격파를 지나면서 증가하지만 속도는 감소한다. 즉 수직 충격파는 거의 폭발적인 압축 현상이고 이곳에서 유동방의 압력이 거의 불규칙하게 상승하는 현상이 나타나고 이로 인해 밀도가 증가한다. 또한 유동의 속도가 감소되어지면 운동에너지(kinetic energy)의 손실이 나타나며 그 손실은 내부에너지(internal energy)의 증가로 나타나 후방에서의 온도는 증가하게 된다.

\[
\begin{align*}
M_1 &\gg 1 \\
V_1 &
\end{align*}
\]

\[
\begin{align*}
M_2 &\ll 1 \\
V_2 &\ll V_1 \\
P_2 &\gg P_1 \\
\rho_2 &\gg \rho_1 \\
T_2 &\gg T_1
\end{align*}
\]

Fig. 3. Sketch of a normal shock wave.

2-3-2. Oblique shock wave and expansion wave

초음속 유동에서 발생하는 더 일반적인 충격파 형태인 경사충격파는 흐름 방향에 90°이외의 각도를 가지고 형성된 충격파를 말한다.
Fig. 4 Sketch of an oblique shock wave.

호름방향에 90°인 수직충격파는 경사충격파의 특별한 경우이다. 이 경사충격파의 개략도가 그림 4에 나타나 있다. 그림 4에서 보듯이 경사충격파를 지나면 유동의 물리적 성질이 또한 급격히 변한다. 경사충격파의 전 유동은 초음속이며 후방유동 또한 초음속이다. 그러나 마하수는 감소하여 운동에너지의 수실로 인한 내부에너지 증가에 의해 운도가 상승하게 된다. 또한 경사충격파를 지나면서 압력이 급격히 상승하고 이로 인해 밀도가 상승한다. 그림 5(a)에서 보듯이 이러한 경사충격파는 초음속 유동이 오목한 모퉁이(concave corner)를 돌 때 일어난다. 여기서 균일한 초음속 유동이 표면의 한 면으로 경계를 이루고 있다. 그림 5(a)의 점 A에서 경계면은 각 θ만큼 위쪽으로 곱여지게 된다. 호름방향의 변화는 전방의 자유유동에 대해 경사진 경사충격파에 의해 일어난다. 모든 유산들은 충격파를 지나면서 깜빡각(deflection angle) θ만큼 위쪽으로 곱여지게 된다. 충격파를 통과한 후방의 유동도 또한 균일하고 평행하며 점 A에서 벽(경계면)에 평행하게 흐른다. 이 충격파를 지나면서 마하수는 감소하고 압력, 운도, 밀도는 증가한다.
초음속 흐름이 그림 5(b)에서 볼록한 모퉁이(convex corner)를 돌 때는 폭발파가 형성된다. 여기서 경계면은 각 \(\theta \) 만큼 아랫쪽으로 쪼여져 있다. 그 결과로 유선은 아랫쪽으로 꺾여지게 되고 유동으로부터 멀어진다. 호름방향의 변화는 점 A에 중점을 둔 폭발파를 통하여 일어난다. 표면에서 멀어진 곳에서는 이 폭발파가 부체처럼 퍼진다. 유선들은 점 A의 후방에 있는 벽면과 평행하게 될 때까지 무수한 폭발파를 통하여 연속적으로 변하게 된다. 따라서 폭발파 후방의 유동도 그림 5(b)에서 나타난 것 같이 각 \(\theta \) 만큼 아랫쪽으로 꺾여진 방향, 즉 벽면에 평행하게 된다. 충격파를 전후하여 유동성질들은 불연속으로 변하지만 폭발파를 지나면서 모든 유동성질들은 점 A에서 불연속으로 변하는 벽유선(wall stream line)을 제외하고는 연속적으로 변한다. 폭발파를 지나면서 마하수는 증가하고 압력, 온도, 밀도 등은 감소한다.\(^{12}\)

2-4. 준 일차원유동(Quasi-one dimensional flow)
2-4-1. 준 일차원 유동의 저태방정식

정상 일차원 유동은 유동변수 u, ρ, p, T 등이 한 쪽 방향으로만 변하는 유동으로, 그림 6에서 그려진 것과 같이 x만의 함수이다. 그러나 그림 7(b)와 같이 유관의 단면적이 x를 따라서 변화하는 유동 문제들이 많이 있다. 단면적이 변하는 유동장은 실제로 3차원 유동 이어서 유동성질 (p, T, ρ)이 일반적으로 x, y, z의 함수이다. 그러나 이 경우에도 단면적 $A = A(x)$가 매우 원만하게 변한다면 y, z 방향의 변화를 무시하고 x만의 함수로 가정할 수 있다. 따라서 정상유동에서 $A = A(x)$, $p = p(x)$, $\rho = \rho(x)$, $u = u(x)$로 표시할 수 있는 유동을 정상 준 1차원 유동(quasi-one dimensional flow)으로 정의한다. 준 1차원 유동의 대표적인 예가 노즐 유동이다.

준 일차원 정상유동에 대해 대수적으로 표시된 운동방정식을 그림 7에 그려져 있는 가변면적의 제어체적에 직접 적용함으로써 얻을 수 있다.
식 (2-9)는 연속방정식으로서 이를 그림 7의 제어체적에 대하여 적분하면 다음과 같다.

\[\frac{\partial}{\partial t} \int \int c \cdot \rho dV + \int \int c \cdot \rho \rightarrow v \cdot n \ ds = 0 \] (2-9)

식 (2-9)는 연속방정식으로서 이를 그림 7의 제어체적에 대하여 적분하면 다음과 같다.

\[\rho_1 u_1 A_1 = \rho_2 u_2 A_2 \] (2-10)

Fig. 7 Control volume on quasi-one dimensional flow.

식 (2-10)이 정상상태의 준 일차원적 유동에 대한 대수식으로 주어진 연속방정식이다. 식 (2-10)에서 \(\rho_1 u_1 A_1 \)은 영역 1에서의 단면에 대한 면적분이며, \(\rho_2 u_2 A_2 \)는 영역 2에서의 단면에 대한 면적분이다. 영역 1과 영역 2사이의 제어면의 측면에 대한 면적분은 영이다. 그 이유는 측면에서 \(\rightarrow v \cdot \rightarrow n = 0 \) 이기 때문이다.

\[\frac{\partial}{\partial t} \int \int \rightarrow v_0 \rightarrow v dV + \int \int s \rho \rightarrow v \ (\rightarrow v \cdot \rightarrow n) \ ds = \\
\int \int \int \rightarrow v_0 \rightarrow f dV - \int \int s \rho \rightarrow n \ ds \] (2-11)
식(2-11)은 적분형으로 표시된 정상상태의 운동량방정식이다. 이를 그림 7의 제어체적에 적용하면 식(2-12)와 같다.

\[P_1 A_1 + \rho_1 u_1^2 A_1 = P_2 A_2 + \rho_2 u_2^2 A_2 \]
\[(2-12) \]

여기서 체적력은 없다고 가정했고 \(\int_{A_1}^{A_2} p dA \)는 제어체적의 좌 변에 작용하는 압력에 의한 항이다. 식(2-12)는 준일차원 정상유동의 운동량방정식이다. 영역 1과 영역 2 사이의 제어체적의 측면에 작용하는 압력을 나타내는 적분항이 포함되어 있기 때문에 식(2-12)은 엄격히 말서서 대수식이라고 할 수는 없다.

유환제어체적을 미소제어체적으로 대치하여 준1차원 정상유동의 운동량방정식을 미분형으로 표시할 수 있다. 식(2-10)으로부터

\[\rho u A = \text{일정} \]
\[(2-13a) \]

그러므로

\[\frac{d}{dx}(\rho u A) = 0 \text{ 또는 } \frac{1}{\rho} \frac{d\rho}{dx} + \frac{1}{u} \frac{du}{dx} + \frac{1}{A} \frac{dA}{dx} = 0 \]
\[(2-13b) \]

식(2-13)은 준1차원 정상유동의 미분형 연속방정식이다. 미분형 운동량방정식을 얻기 위하여 그림 8에 그려진 미소제어체적에 식(2-13)을 적용하자.
Fig. 8 Infinitesimal volume.

Figuratively, the length is \(\Delta x \). Equation (2-13) is divided by \(\Delta x \) and \(\Delta x \rightarrow 0 \) of the limit.

\[
\lim_{\Delta x \to 0} \left[\frac{P_2 A_2 - P_1 A_1}{\Delta x} + \frac{\rho_2 u_2^2 A_2 - \rho_1 u_1^2 A_1}{\Delta x} \right] = \\
\lim_{\Delta x \to 0} \int_{A_1}^{A_2} \rho \frac{dA}{dx} dx
\]

(2-14)

By the definition of differentiation, the equation is written as

\[
\frac{d}{dx}(pA) + \frac{d}{dx}(\rho u^2 A) = p \frac{dA}{dx}
\]

(2-15)

By the principle of conservation of momentum,

\[
p \frac{dA}{dx} + A \frac{dp}{dx} + \rho A \frac{du}{dx} = p \frac{dA}{dx}
\]

(2-16)

Equation (2-13) is used, so the equation (2-16) is simplified to be the same as the previous equation. The remainder is as follows.
식 (2-17)은 바로 Euler 방정식이다.

끝으로 미분형의 에너지방정식은 식 (2-18)이다.

\[
\frac{dh}{dx} + u \frac{du}{dx} = 0
\]
(2-18)

식 (2-13), (2-17), (2-18)이 미분형으로 표시된 준1차원, 단열, 정상류의 지배방정식이다.

2-4-2. 유관의 단면적 \(A \)와 속도 \(u \)와의 관계

\[
\frac{1}{\rho} \frac{d\rho}{dx} + \frac{1}{u} \frac{du}{dx} + \frac{1}{A} \frac{dA}{dx} = 0
\]
(2-13b)

위 식에서 \(\frac{1}{\rho} \frac{d\rho}{dx} \)를 소거하기 위해 식 (2-18)을 다시 고려하면

\[
u \frac{du}{dx} = - \frac{1}{\rho} \frac{d\rho}{dp} \frac{dp}{dx}
\]
(2-19)

이 모든 식은 단열, 비점성 유동이며 유체에 작용하는 점성에 의한 마찰이나 열전도같은 소산작용 (dissipative mechanism)이 존재하지 않은 유동인 등엔트로피 유동에서 나온 식들이다. 따라서 압력변화 \(dp \)는 등엔트로피과정에 의한 밀도변화 \(d\rho \)를 수반한다. 그래서 압력변화와 밀도변화의 관계식을 다음과 같이 쓸 수 있다.

\[
\frac{dp}{d\rho} = (\frac{\partial p}{\partial \rho})_s = a^2
\]
(2-20)

식 (2-19)와 (2-20)을 결합하면

\[
u \frac{du}{dx} = \frac{a^2}{\rho} \frac{d\rho}{dx}
\]

즉,

\[
\frac{1}{\rho} \frac{d\rho}{dx} = - \frac{u}{a^2} \frac{du}{dx} = - \frac{u^2}{a^2} \frac{1}{u} \frac{du}{dx} = - M^2 \frac{1}{u} \frac{du}{dx}
\]
(2-20)
식(2-21)을 식(2-13b)에 대입하면 면적-속도 관계식을 얻는다.

\[\frac{1}{A} \frac{dA}{dx} = (M^2 - 1) \frac{1}{u} \frac{du}{dx} \] \hspace{1cm} (2-22)

위 식으로부터 다음과 같은 사실을 알 수 있다.

(a) \(M \to 0 \) (비압축성 유동)이며 식(2-22)는 \(A_0 = \) 일정임을 보여준다. 이는 비압축성 유동의 연속방정식이다.

(b) \(0 < M < 1 \) (아음속 유동) 영역에서 속도의 증가 \(\frac{du}{dx} > 0 \)는 면적의 감소 \(\frac{dA}{dx} < 0 \)를 가져오며, 반대로 면적이 증가 \(\frac{dA}{dx} > 0 \)되면 속도는 감소 \(\frac{du}{dx} < 0 \)된다. 그러므로 축소노즐 (convergent nozzle)에서는 속도가 증가하고 확대노즐 (divergent nozzle)에서는 속도가 감소하는 비압축성 유동의 결과가 아음속 압축성 유동에 대해서도 성립한다. (그림 9(a))

(c) \(M > 1 \) (초음속 유동)의 영역에서는 속도의 증가 \(\frac{du}{dx} > 0 \)는 면적이 증가되고 \(\frac{dA}{dx} > 0 \), 면적감소 \(\frac{dA}{dx} < 0 \)로 속도도 감소 \(\frac{du}{dx} < 0 \)가 된다. 초음속의 경우 확대노즐에서 속도가 증가되며 축소노즐에서 속도는 감소된다. (그림 9(b)) 이와 같은 현상은 면적이 증가되면서 유동이 팽창하게 되는데 면적의 증가율 \(\frac{1}{A} \frac{dA}{dx} \)에 비해 흐름팽창에 의한 밀도 감소율 \(\frac{1}{\rho} \frac{d\rho}{dx} \)이 더 커서 단위시간당 같은 질량을 흘려보내기 위해서는 속도가 증가되지 않으면 안 된다는 사실과 판계가 있다.
(d) $M=1$에서 식 $(2-22)$로부터 $\frac{dA}{dx}=0$이 된다. 이는 $M=1$에서 수학적으로 면적이 최대나 최소가 되는 곳에 해당한다. 물리적으로 가능한 경우는 면적이 최소가 되는 것이다.

Fig. 9 The flow in cross-sectional convergent and divergent tube.

Fig. 10 The flow in cross-sectional convergent-divergent tube.

위의 결과로부터 기체가 아음속에서 초음속으로 편장하기 위하여 그림 10(a)에 표시되어 있는 축소-확대노즐을 통하여 유동이 이루어져야 한다. 노즐의 축소부분이 끝나며 확대부분이 시작되는, 면적이 최소가 되는 곳에서 그림 10(a)에 나타난 것과 같이 유동은 음속이다. 이러한 최소면적부분을 노즐의 목(throat)이라 부른다. 이러한 축
소-확대노즐은 19C말 중기 터빈에 이러한 형상을 맨 처음 사용한 Carl de Laval의 이름을 따서 de Laval노즐이라고도 부른다.\(^{12}\)

2-4-3. 정체성질, 전성질(stagnation or total properties)

1차원 압축성 유동의 기본원리들을 수직 충격파와 가열이 있는 유동의 실제문제에 직접 적용하기 전에 다중의 자주 사용되는 정의 및 보조식을 고찰해야 할 필요가 있다. 정체성질은 압축성 유동에서 보통 기준치로 자주 사용되는데 다음과 같이 정의한다. 유동장의 어떤 점에서 유체입자가 정압 \(p\), 정온도 \(T\), 정밀도 \(\rho\)의 상태에서 속도 \(V\)와 마하수 \(M\)으로 운동한다고 하자. 그 점에서 정체성질(stagnation properties) 또는 전성질(total properties)이란 그 점에서 유체입자를 동엔트로피 과정을 통하여 속도를 영으로 가졌을 때 그 유체입자가 가지는 유동변수들의 값이며, 보통 유동변수들에 하첨자 ‘0’을 붙여 표시한다. 예를 들면 정체압력, 밀도, 온도를 각각 \(p_0, \rho_0, T_0\)로 표시한다. 동엔트로피 유동에서는 유선을 따라 정체치가 일정하다. 물론 유선이 다르면 정체치가 다를 수 있다. 만약 유동이 먼 전방으로부터 균일한 조건, 즉 모든 유선이 동일한 엔트로피를 가지고 시작되었으면 모든 유선을 따라 엔트로피가 일정하므로 유동장의 모든 점에서 엔트로피가 일정하다. 이러한 유동을 균일 엔트로피(homoentropic flow)이라 부르고, 균일엔트로피 유동의 모든 점에서 정체성질들이 일정하다. 그러나 비가역 유동이나 가열이 있는 유동에서는 정체성질들이 일정하지 않고 위치에 따라 그 값이 다르다.\(^{13}\)

비정상유동이나 비가역 유동(가열이 있는 유동을 포함)에서는 시간이나 위치에 따라 정체성질이 달라지므로 가상적인 동엔트로피 과정을 통하여 계산으로서만 그 값을 구할 수밖에 없으나 정상 동엔트로피 유동에서는 실제로 \(V=0\)을 만들어 정체성질을 측정할 수도
2-4-4. 음속성질(sonic properties)

정체성질을 정의할 때와 마찬가지로 유동장의 어떤 점 \((p,T,V,M)\)의 유체입자를 동세트로피 과정을 통하여 \(M=1\)일 때까지 감속시키던지 \((M > 1)\) 또는 가속시켰을 때 \((M < 1)\)유체입자가 가지는 유동성질들을 음속성질이라고 정의하며, 보통 상첨자 \(*\) 를 붙여서 표시한다. 예를 들면 \(p^*,T^*,\rho^*,a^*\) 등이다. 동세트로피 유동에서는 유선을 따라 \(p^*,T^*,\rho^*,a^*\) 가 일정하며, 균일세트로피 유동에서는 모든 점에서 그들이 일정하다. 정확히 말하면 \(T^*\)와 \(a^*\)는 단일과정이기만 하면 항상 일정하다.

\[V=0\]
\[T=T_0\]
\[V=a^*\]
\[\rho = \rho^*\]
\[p = p^*\]
\[p=0\]
\[T=T_0\]
\[V=a\]
\[\rho = \rho^*\]
\[p = p^*\]
\[M=1\]

Fig. 11 The condition of sonic properties.

그림 11에서와 같이 동세트로피 유동에서 \(M=1\)인 점에서 정압 \(p\), 밀도 \(\rho\), 온도 \(T\), 음속 \(a\)를 측정하면 그 값이 바로 \(p^*,\rho^*,T^*,a^*\) 값이다. 그러나 비가역성정도이나 비정상 유동에서는 위치와 시간에 따라 음속성질이 달라지므로 오직 가상적인 동세트로피 과정을 통하여, 즉 수식에 의해서만 그 값을 알아낼 수 있다. \(a^*\)는 \(a^* = \sqrt{\gamma RT}\)으로부터
2-5. Nozzle flow

먼저 노즐 목(throat)에서의 단위시간당 질량유량은 다음과 같다. (그림 12에 설명해 놓았다.)

\[
\dot{m} = \rho u A
\]

(Fig. 12 The geometric shape for inducing area-Mach number relationship.)
그리고 단열인 경우 열량적 완전기체의 에너지 방정식을 생각하자.

\[c_p T + \frac{1}{2} u^2 = c_p T_0 \] \hspace{1cm} (2-26)

식 (2-26)으로부터

\[u = [2c_p(T_0 - T)]^{\frac{1}{2}} \] \hspace{1cm} (2-27)

식 (2-27)를 식 (2-26)에 대입하면

\[m = (2c_p) \frac{1}{2} T_0 \frac{1}{2} A \rho_0 \frac{p}{\rho_0} (1 - \frac{T}{T_0}) \frac{1}{2} \] \hspace{1cm} (2-28)

그리고 등 엔트로피 관계식(2-29)을 사용하여 식(2-28)을 압력비로 나타내면 식(2-30)과 같다.

\[\frac{T}{T_0} = \left(\frac{p}{p_0} \right)^{\frac{\gamma - 1}{\gamma}} = \left(\frac{\rho}{\rho_0} \right)^{\gamma - 1} \] \hspace{1cm} (2-29)

\[m = (2c_p) \frac{1}{2} T_0 \frac{1}{2} \rho_0 A \left(\frac{p}{p_0} \right)^{-\frac{1}{\gamma}} \left[1 - \left(\frac{p}{p_0} \right)^{\frac{\gamma - 1}{\gamma}} \right] \] \hspace{1cm} (2-30)

완전기체의 상태방정식 \(\rho_0 = \frac{P_0}{R_T} \)를 위 식에 대입하면

\[m = \left(\frac{2c_p}{R} \right) \sqrt{\frac{p_0}{T_0}} A \left(\frac{p}{p_0} \right)^{-\frac{1}{\gamma}} \left[1 - \left(\frac{p}{p_0} \right)^{\frac{\gamma - 1}{\gamma}} \right]^{\frac{1}{2}} \] \hspace{1cm} (2-31)
A의 변화를 식 (2-31)을 이용하여 그래프에 그리보면 그림 14와 같다.

그림 13로부터 알 수 있는 것과 같이 주어진 \(m, \ p_0, \ T_0 \) 에 대해 압력비의 변화에 대한 A는 압력비 \(p/\ p_0 = p^*/p_0 \) 일 때 최소가 된다. 혹은 최소의 A로 정의하며 기호는 \(A^* \)로 표시하는데 이는 \(p_0 \)와 \(T_0 \)가 주어졌을 때 주어진 질량유동 \(m \)를 통과시키기 위한 최소의 면적이다. 그러나 \(A^* \)이하로 면적을 감소시키면 주어진 질량유량을 홀려 보낼 수 없다. \(A \)가 최소가 되는 곳에서의 압력비는 식 (2-31)을 압력비에 대하여 미분하여 양으로 놓았을 때의 압력비이다.

즉, \(dA/d(p/\ p_0) = 0 \)의 해는

\[
\frac{\frac{p}{p_0}}{A^*} = \frac{\frac{p^*}{p_0}}{A^*} = \left(\frac{2}{\gamma + 1} \right)^{-\frac{\gamma}{\gamma - 1}}
\]

(2-32)

여기서 \(p^* \)는 \(A = A^* \)에서의 압력이며 임계압력(critical pressure)이라 한다. \(\gamma = 1.4 \)인 공기에 대하여 임계압력비는 식 (2-32)로부터 \(p^*/p_0 = 0.528 \)이다. 식 (2-32)을 목 \((A^*) \)에서 계산하면
Fig. 13 Cross-sectional area vs pressure ratio required for a given mass flow rate.

\[
\dot{m} = \frac{\sqrt{2}}{R} \frac{c_p}{\sqrt{T_0}} \frac{p_0}{T_0} A \cdot \left(\frac{p^*}{p_0} \right)^{\frac{1}{\gamma}} \left[1 - \left(\frac{p^*}{p_0} \right)^{\frac{\gamma - 1}{\gamma}} \right]
\]

이 되며 식 (2-32)로 주어진 \(p^*/p_0 \)을 위식에 대입하면

\[
\dot{m} = \frac{\sqrt{2}}{R} \frac{c_p}{\sqrt{T_0}} \left(\frac{2}{\gamma + 1} \right)^{\frac{1}{\gamma - 1}} \left(\frac{\gamma - 1}{\gamma + 1} \right)^{\frac{1}{2}} \frac{p_0}{\sqrt{T_0}} A \cdot
\]

\[(2-33)\]

식 (2-33)을 \(A^* \)에 대해 풀면

\[
A^* = \frac{1}{K} \frac{\sqrt{T_0}}{p_0} \cdot \dot{m}
\]

\[(2-34)\]
여기서, \(K = \frac{\sqrt{2} c}{R} \left(\frac{\gamma - 1}{\gamma + 1} \right)^{\frac{1}{2}} \left(\frac{2}{\gamma + 1} \right)^{\frac{1}{\gamma - 1}} \) 이다.

식 (2-34)로부터 목면적 (throat area) 은 질량유량 \(m \), 정체조건 \((p_0, T_0)\)과 기체의 종류에 따른 \(K \)의 함수로 표시되어 있다. 식 (2-33)은 \(A \) 가 주어졌을 때 질량유량 \(m \) 를 계산하는 식이다. 식 (2-33)와 식 (2-34)을 사용시 throat에서 유속이 음속에 도달해 야만 한다.

2-6. Particle tracking

입자의 거동을 묘사하기 위하여 입자의 위치, 속도, 질량 및 운도 (엔탈피)들은 Lagrangian관점에서 방정식으로 기술한다. 먼저 입자의 위치는 다음의 방정식에 의해 결정된다.

\[
\frac{dx_p}{dt} = U_p \tag{2-35}
\]

여기서, \(x_p \)는 입자의 위치, \(U_p \)는 입자의 속도이다.

입자의 운동량은 다음의 식에 의해 결정된다.

\[
m_p \frac{dU_p}{dt} = D_p (U - U_p) + m_p b g - V_p \nabla p \tag{2-36}
\]

여기서,

\(m_p \): 입자의 질량
\(D_p \): 항력항수 (뒤에서 설명)
\(U \): 연속체의 순간속도 \(U = U_c + U_v \)
\(g \): 중력가속도
\[b = \text{부력 인자 } (1 - \frac{\rho_e}{\rho_p}), \text{ 부력항이 비활성인 경우 1} \]

\[V_p : \text{입자 체적} \]

\[\nabla p : \text{연속체 압력구배} \]

입자 운동량방정식의 우변 첫번째 항은 연속체에 의한 항력을 나타내고 있으며 두번째 항은 중력장에 의한 힘을 나타낸다. 항력함수는 다음과 같이 표현된다.

\[D_p = \frac{1}{2} \rho A_p C_D |U - U_p| \]

여기서,

\[A_p : \text{입자의 두영면적, } \frac{\pi d_p^2}{4} \]

\[C_D : \text{항력계수, 기본값은} 0.42 \]

\[C_D = \frac{24}{\text{Re}} (1 + 0.15 \text{Re}^{0.687}) + \frac{0.42}{1 + 4.25 \times 10^4 \text{Re}^{-1.16}} \]

이 상관관계식은 Clift, Grace & Weber(1978)에 의해 제시되었으며 Re<3\times10^5\text{ 인 강체구형 입자에 대해 유효하다.}^{14)}

입자의 질량은 다음의 방정식에 의해 결정된다.

\[\frac{dm_p}{dt} = -\pi d_p \frac{k_v}{c_{pv}} Nu \ln(1 + B_M) \]

여기서,

\[d_p : \text{입자의 지름} \]
k_v : 액직에 의해 생성된 증기의 열전도계수

c_{pv} : 액직에 의해 생성된 증기의 비열

Nu : Nusselt number, \(Nu = 2(1 + 0.3 \, Re^{0.5} \, Pr^{0.33})F \)

여기서 \(Pr = \) 연속체의 농류 Prandtl number

\[
F = \frac{1}{B_M} \ln(1 + B_M)
\]

물질전달에 대한 Frossling 보정

B_M : 물질전달수, 물질전달과정에서의 구동력을 표현한다.

\[
B_M = \frac{Y_{vs} - Y_{w}}{1 - Y_{w}}
\]

여기서 \(Y_{vs} \) 는 액직 표면에서의 증기의 질량분율

\(Y_{w} \) 는 액직 주위 기체에서의 증기의 질량분율

액직 표면에서의 증기의 질량분율은 다음식에 의해서 구한다.

\[
Y_{vs} = \left[1 + \left(\frac{P}{P_{vs}} - 1 \right) \frac{W_c}{W_v} \right]^{-1}
\]

여기서,

P : 액직 주위 유체의 전압

P_{vs} : 주어진 온도에서 포화조건인 상태의 액직 표면의 증기 분압

W_c : 주위유체의 몰 수

W_v : 증기의 몰 수
입자의 온도 T_p는 입자의 엔탈피 방정식으로부터 구한다.

$$m_p c_p \frac{dT_p}{dt} = m_p L \frac{df_s}{dt} + H_{fg} \frac{dm_p}{dt} + \alpha (T_g - T_p) \quad (2-38)$$

여기서,

c_p : 입자의 비열
L : 입자의 응고질량
H_{fg} : 입자의 증발질량
f_s : 입자의 고상분율(solid fraction)
α : 입자와 주위 유체간의 열전달계수
T_g : 주위 유체 온도

수치해석 과정에서 응고질량 및 증발질량을 고려하지 않았으므로,

$$m_p c_p \frac{dT_p}{dt} = \alpha (T_g - T_p)$$

로 간단하게 표현할 수 있다.

입자의 열전달계수는 다음 식으로 구한다.

$$\alpha = \pi k_c Nu \ dp \quad (2-39)$$

여기서, k_c 는 연속체의 열전도계수이다.

입자의 종류가 lazy, stubborn 혹은 isothermal일 경우는 엔탈피 방정식은 필요 없다. 그러나, 우리가 수치해석 시 사용한 입자의 경우 heat exchanger particle을 이용하였고, 엔탈피 방정식은 다음과 같이 정리할 수 있다.

$$m_p c_p \frac{dT_p}{dt} = \alpha (T_g - T_p) \quad (2-40)$$
3장 수치 기법

3-1. 지배미분방정식

3-1-1. 미분방정식의 의미

우리가 접하게 되는 개개의 미분방정식은 어떤 보존 원리를 나타낸다. 각 방정식은 그것의 종속변수로서 어떤 물리량을 포용하고 있으며, 이들 종속 변수에 영향을 끼치는 다양한 인자들이 서로 균형을 이루고 있어야 한다. 이들 방정식의 종속변수들은 대개 “단위 (specific)”량, 즉 단위 질량 기준이다. 그 예로는 질량분율, 속도, 그리고 비엔탈피와 같은 것이 있다. 이러한 유형의 미분방정식에서 각 항들은 단위 체적당 미치는 영향을 나타낸다. 이러한 변수들이 단위 체적당 미치는 영향을 미분함으로 나타내고, 이러한 항들이 모인 방정식은 어떤 물리량에 대한 평형성과 보존성을 나타낸다. 이제 몇 개의 표준형 미분방정식을 예를 들어 일반적인 형태를 알아보자.

3-1-2.에너지방정식

무시할 정도의 점성 소실을 가지는 정상 지속 유동에 관한 에너지방정식은 다음과 같다.

$$div(\rho u h) = div(k grad T) + S_h \quad (3-1)$$

여기서, \(h\)는 비엔탈피, \(k\)는 열전도율, \(T\)는 온도, \(S_h\)는 단위 체적당 열발생률이다. \(div(k grad T)\)항은 Fourier 열전도 법칙에 의한 운체 내부에서의 전도 열전달 효과를 나타낸다. 이상기체, 그리고 고체와 액체에 대해서 다음과 같은 관계식으로 쓸 수 있다.

$$cgrad T = gradh \quad (3-2)$$

여기서, \(c\)는 정압 비열이다. 이 식을 대입하면 에너지방정식은 다음과 같이 된다.
만일, \(c\)가 상수이면 \(h\)와 \(T\)의 관계는 다음과 같이 간단해진다.
\[
h = cT
\]
따라서, 식 (3-3)은 다음과 같이 된다.
\[
div(pu T) = div\left(\frac{k}{c} \text{grad} T\right) + \frac{S_h}{c}
\] (3-4)

이와 같은 방법으로 엔탈피 또는 온도 둘 다 종속변수로 채택될 수 있다. 정상 열진도의 경우에서는 속도 \(u\)를 0으로 하면 온도를 수 있으며, 다음과 같다.
\[
div(k\text{grad} T) + S_h = 0
\] (3-5)

3-1-3. 운동량방정식

뉴턴유체에 관하여 주어진 방향에 대한 운동량 보존을 지배하는 미분 방정식을 비슷한 방법으로 나타낼 수 있으나, 전단응력과 수직응력이 고려되어야 하며, 또 stokes의 점성 법칙은 Fourier의 법칙에 비하여 복잡하기 때문에 운동량방정식은 에너지방정식에 비하여 식 자체가 복잡하다. \(u\)가 \(x\)방향의 속도일 때 이에 관한 운동량방정식은 다음과 같다.
\[
\frac{\partial}{\partial t} (\rho u) + \text{div}(\rho \text{grad} u) = \text{div}(\mu \text{grad} u) - \frac{\partial p}{\partial x} + B_x + V_x
\] (3-6)
여기서, \(\mu\)는 점성계수, \(p\)는 압력, \(B_x\)는 단위 체적당 \(x\)방향의 체적, \(V_x\) 는 \(\text{div}(\mu \text{grad} u)\) 외에 추가되는 점성항이다.

3-1-4.난류운동에너지방정식

난류 계산에 있어서 현재 보편화된 2-방정식 모델(Lauder와
Spalding에 의해 발표됨)은 그중 1개의 방정식으로서, 요동운동의 운동에너지 \(k \)에 대한 방정식을 사용한 것으로, 다음과 같다.

\[
\frac{\partial}{\partial t}(\rho k) + \text{div}(\rho \mathbf{\nabla} k) = \text{div}(\Gamma_k \text{grad} k) + G - \rho \varepsilon
\] \hspace{1cm} (3-7)

여기서, \(\Gamma_k \)는 \(k \)에 대한 확산계수, \(G \)는 난류에너지 생성률, \(\varepsilon \)은 난류에너지 소산율, \(G - \rho \varepsilon \)은 정미 생성량을 나타낸다. 변수 \(\varepsilon \)에 관한 지배 미분방정식도 이와 유사한 형태를 가져간다.

3-1.5. 일반형 미분방정식

앞에서 살펴본 미분방정식에서, 우리가 수치해석에 적용되는 모든 종속변수들은 일반화된 보존 법칙을 따르는 것을 알 수 있었다. 종속변수를 \(\phi \)로 두면 일반형 미분방정식은 다음과 같다.

\[
\frac{\partial}{\partial t}(\rho \phi) + \text{div}(\rho \mathbf{\nabla} \phi) = \text{div}(\Gamma \cdot \text{grad} \phi) + S
\] \hspace{1cm} (3-8)

\(\Gamma \)와 \(S \)는 여러 가지 \(\phi \)의 의미에 대응하는 양으로서, 각각 확산계수와 생성항이다. 일반형 미분방정식은 비정상항, 대류항, 확산항, 그리고 생성항으로 구성되어 있다. 여기서, \(\phi \)는 여러 가지 변수들 나타낸다. 그 예로는 엔탈피, 운도, 속도 정분, 난류운동에너지, 난류길이 작도 등을 들 수 있다. 따라서, 이들 변수들 각각에 관한 확산계수 \(\Gamma \)와 생성항 \(S \)에 대하여 적절한 의미가 부여되어야 한다. 열전달 및 물질전달, 유체유동, 난류, 그리고 이와 관련된 과정들에 관한 모든 미분방정식을 일반형 \(\phi \) 방정식의 특별한 경우로 생각하는 것은 중요하고 간략한 단계이다. 결과적으로, 우리는 단지 식 (3-8)의 수치해법 고려하면 된다. 그러므로, 일반형 \(\phi \) 방정식에 관한 개념을 이용하면 일반적인 수치해법을 공식화할 수 있고, 수치해석 프
로그램에도 적용하게 된다.

3-2. 이산화 방법

3-2-1. 이산화방정식의 개념 및 구성

이와 같은 변수 ϕ에 대한 일반형 방정식을 풀이하는 방법이 중요할 때, 미분방정식의 영역에 포함된 연속적인 정보에 관한 우리의 관심을 이산된 위치에서의 값에 관한 것으로 대치시켜서, 즉 ϕ의 분포를 이산화하여 풀어 낼 수 있다. 이런 종류의 수치적 방법을 이산화 방법(discretization method)이라고 한다.

selectedIndex의 격자점에 관한 ϕ의 미지값을 포함하는 대수방정식을 얻을 수는 이산화방정식이라 하고, 이것은 ϕ를 지배하는 미분방정식로부터 유도해 낼 것이다. 이 유도 과정에서, ϕ가 격자점 사이에서 어떻게 변하는가에 관한 약간의 가정이 수반되어야 한다. 이러한 ϕ의 ‘분포 형태’는 하나의 대수식으로서, 전체 계산 영역에 관하여 충분히 만족하도록 선택될 수 있지만, 실용적으로는 부분 분포 형태를 사용하는 것이 더 편리하다. 이것은 어떤 주어진 부분이 그 영역 내부에서와 주위의 격자점에서의 ϕ값을 이용하여 하나의 작은 영역에 걸친 ϕ의 변화를 기술하게 하는 방법이다. 따라서, 분리된 분포 형태의 가정이 각 부분 영역에 알맞게 하기 위하여 계산 영역을 많은 부분 영역 또는 요소로 분할시키는 것이 일반적이다.

이산화 방정식은 격자점 집합에서의 ϕ값을 연결시켜 주는 대수적인 관계이다. 이러한 방정식은 ϕ를 지배하는 미분방정식으로부터
유도되며, 따라서 미분방정식에서와 동일한 물리적 상황을 나타낸다. 주어진 하나의 미분방정식에서 유도될 수 있는 이산화방정식은 유일하지 않는데, 이는 여러 가지 분포형태의 가정과 유도방법의 차이에서 기인한다고 할 수 있다.

3-2-2. 이산화 연습(For 1-D Steady)

다음 식으로 지배되는 1차원 정상 상태를 생각해 보자.

\[
\frac{d}{dx} (\rho u \phi) = \frac{d}{dx} \left(\Gamma \frac{d\phi}{dx} \right) + S \tag{3-9}
\]

이산화방정식을 유도하기 위하여 그림 14의 격자점군을 사용하고, 격자점 E와 W를 인접점으로 가는 격자점 P를 주목해 보자. 실선은 계어체적면을 표시하며, 잠시 이 면의 정확한 위치는 중요하지 않다고 하자. 문자 e와 w는 이 면들을 표시한 것이다. 지금의 1차원 문제에 관하여 y,z방향으로 단위 두께를 가정하면 계어체적의 부피는 \(\Delta x \times 1 \times 1 \)이다. 이 계어체적에 대하여 식 (3-9)을 적분하면 다음과 같은 식을 얻을 수 있다.

\[
(\rho u \phi)_e - (\rho u \phi)_w = \left(\Gamma \frac{d\phi}{dx} \right)_e - \left(\Gamma \frac{d\phi}{dx} \right)_w + \int_w^e S \cdot dx \tag{3-10}
\]

부분 산형 분포 형태로부터 식 (3-10)의 미분계수 \(\frac{d\phi}{dx} \)를 구하면, 그 결과는 다음과 같은 식으로 주어진다.

\[
(\rho u)_e \phi_e - (\rho u)_w \phi_w = \Gamma_e \frac{\phi_e - \phi_P}{(\Delta x)_e} - \Gamma_w \frac{\phi_P - \phi_w}{(\Delta x)_w} + S \cdot \Delta x \tag{3-11}
\]

여기서, \(S \)는 해당 계어체적에 관한 \(S \)의 평균값을 나타낸다.
이산화 방정식 (3-11)를 다음과 같은 형태로 바꾸는 것이 편리하다.

\[a_p \phi_p = a_E \phi_E + a_w \phi_w + b \] (3-12)

Where, \(a_E = D_e + \max[-F_e, 0] \)
\(a_w = D_w + \max[F_w, 0] \)
\(a_p = a_E + a_w + (F_e - F_w) \)
\(b = \bar{S} \cdot \Delta x \)

\[F \equiv \rho u \]

\[D \equiv \frac{\Gamma}{\partial x} \]

\[(\Delta x)_w \]

\[(\Delta x)_e \]

\[x \]

\[\Delta x \]

Fig. 14 1차원 문제에 대한 격자점 배열

일반적으로 식(3-12)는 \(a_p \phi_p = \sum a_{nb} \phi_{nb} + b \)와 같은 형태로 생각하는 것이 편리하다. 여기서 nb는 인접점을 의미하며, 그 합은 모든 인접점을 합한 것이 전체 나타낸다. \(\frac{d\phi}{dx} \)를 계산하기 위해 간단한 분포형태의 가정을 사용하였다. 물론, 그 밖의 많은 보간함수도 가능하다. 또한 모든 물성치에 대하여 동일한 분포를 가정할 필요가 없다는 것을 알아야 한다. 어떤 주어진 변수에 관하여 반드시 동일한 분포 형태의 가정이 사용될 필요는 없다. 그리고 항상 물리적으
로 타당한 기동과 전체적인 평형을 고려하여 만족시켜야 한다.

3-3. 해석 기법

3-3-1. FVM(Finite Volume Method)

유한한 제어체적에 관하여 미분방정식을 적분하여 제어체적 이산화 방정식을 유도하는 것으로 해석 유동장을 지배하는 미분방정식 (Governing Equations)의 변수들이 각각의 격자(Grid or Cell)에서의 값을 대표(Discretization)한다. 기본적으로 확산항의 변수는 piecewise-linear 분포형태, 생성항의 변수는 stepwise 분포형태로 가정하며, 내류항의 경우는 hybrid scheme을 적용한다. 수치해석에 일반적으로 사용하는 불인 PHOENICS의 격자를 그림 15에 나타내었다.

3-3-2. SIMPLE & SIMPLEST 알고리즘

SIMPLE(Semi-Implicit Method for Pressure-Linked Equations) 알고리즘은 압력장을 구하기 위하여 Patankar와 Spalding등에 의해 개발된 것으로 실행순서는 다음과 같다. 먼저 운동량방정식을 재구성하고 주위 격자점의 영향을 배제시킨 속도 수정식을 연속방정식에 대입해 압력수정방정식을 구성한다.

1. 압력장을 가정한다.
2. 운동량방정식을 풀어 속도장을 구한다.
③ 압력수정방정식을 풀다.
④ 가정한 압력장에 압력수정을 더하여 새로운 압력장을 구한다.
⑤ 속도수정식을 이용하여 ②에서 구한 속도를 수정한다.
⑥ 기타 종속변수 ϕ에 대한 방정식을 풀다.
⑦ 수정된 압력을 새로운 예측값으로 보고 순서 ②로 돌아가서 수렴해를 얻을 때까지 반복한다.

SIMPLEST(SIMPLE ShorTened)는 Spalding에 의해 제안된 것으로 PHOENICS의 기본 알고리즘이다. 이것은 SIMPLE알고리즘이 격자가 조밀할수록 수렴이 어려워지는 것이 운동량방정식에 있는 대류항에 기인한다는 점에 착안한 것이다. 대류항은 확산항과는 달리 격자점 P의 서쪽 경계면의 값과 격자점 W의 동쪽 경계면의 값이 다르다. 이것은 속도의 부정확성을 인접 격자점의 하류로 전파시키게 되고 결과적으로 운동장의 불평형을 초래한다. SIMPLEST에서 속도수정방정식을 구성할 때 계수 a_{nb}에 확산항을 포함시키고
대류에 의한 영향은 압력수정방정식의 생성항에 포함시킨다. 그 외 계산절차는 SIMPLE과 동일하다.

3-4. Relaxation factor15)

CFD에서 해를 구하는 과정은 초기 가정값에서 출발하여 해가 완전히 수렴할 때까지 가정값을 수정하는 반복계산과정을 거친다. 반복계산과정을 거치는 첫 번째 이유는 유동장을 지배하는 미분형 운동량 방정식(Navier–Stokes Equation)이 비선형이며, 두 번째 이유는 이 방정식에는 미지수인 압력이 포함되어 있기 때문이다. 그러나 단순 전도(conduction)에 관한 미분 방정식은 비선형이 아니므로 반복계산과정을 거치지 않고 한번에 해를 얻을 수 있다. PHOENICS에서는 모든 해석문제를 반복계산과정을 통하여 구한다. 운도나 압력 같은 스칼라량에 대한 매트릭스 해법으로는 SIP(Strongly Implicit Procedure)방법을 약간 수정한 방법을 사용한다. 이의 자세한 내용은 CHAM사에서 공개하지 않으므로 어떻게 수정을 가했는지 명확하지 않으나, 기본배경은 SIP 방법이다. SIP 방법을 사용하면 모든 격자점에서의 해를 준 음시적(implicit)으로 구할 수 있으므로 해의 수렴속도가 빨라진다. 3차원인 경우에는 각 IZ번마다 SIP 방법을 적용한다. 그러나 아래의 PIL 명령어를 사용하면 3차원 모든 영역에 대하여 원하는 변수에 SIP방법을 적용할 수 있다. 공간에 대하여 3차원이고, 스칼라 변수를 풀어야 한다면 반드시 아래의 PIL 명령어처럼 세 번째 지시자를 Y로 두어야 한다.

\begin{verbatim}
SOLUTN(변수,y,y,y,n,n,y)
\end{verbatim}

예를 들어서 3차원이고 유동장내에 고체 블록이 존재하여 유동장과
열전달을 함께 해석해야 하는 Conjugate Heat Transfer 문제에서는 아래의 명령어가 반드시 필요하다.

SOLUTN(P1,y,y,y,n,n,y)
SOLUTN(TEM1,y,y,y,n,n,y)

속도는 비선형성이 심하므로 3차원에서는 SIP방법을 적용하지 않아야 한다. 따라서 SOLUTN 명령어를 따로 건드릴 필요는 없다. 지금까지 얘기한 것은 반복계산과정 중 어떤 시점에서의 종속변수값, \(\Phi^* \)를 구하는 방법(매트릭스 해법)에 대한 것이며, 해를 수렴시키기 위해서는 이러한 \(\Phi^* \)의 값이 변화하지 않을 때까지 반복계산을 수행해야 한다. 대수방정식의 해를 얻는 과정에서 반복계산과 반복계산 사이에 종속변수값의 변화를 느리게 하지 않으며 대부분의 문제에서는 해가 발산한다. 이러한 종속변수의 변화를 조절하는 방법을 이완(relaxation)이라 하며 선형이완(linear relaxation)과 오류시간이완(false time relaxation)의 두가지 방법이 사용된다. 스타일 변수 (온도, 압력, 난류관련 변수 등)에 대하여는 일반적으로 선형이완을 적용하며 벡터량(속도)에는 오류시간이완을 적용한다.

1. 선형이완

\[
\phi_{new} = \phi_{old} + \alpha (\Phi^* - \phi_{old})
\]

여기서 \(\phi_{old} \)는 이전 반복계산에서 얻어진 값 \(\phi^* \)는 현재 반복계산에서 얻어진 값이다. 위의 관계식은 PIL에서 아래의 명령어로 표시된다.

\[RELAX(\phi, LINRLX, \alpha) \]

\(\alpha \)가 1인 경우는 이완을 하지 않는 경우이며, 0인 경우는 100%이완을 하여 해가 개선이 되지 않는다. 해석영역과 유동영역이 복잡할수록 이완을 크게 해야하므로 \(\alpha \)가 작아진다. 일반적으로 0.1이하의 이완계수는 사용하지 않으며, 0.2에서 0.8이 적당하다. \(\alpha \)값에 대한 정
확한 값은 없으며, 문제마다 경험적으로 결정된다.

2. 오류시간이완
오류시간이완은 편성이완의 일종으로서 대수방정식에 임의의 생성 항을 추가하여 반복계산의 속도를 누그러 전리하는 효과가 있다. 온도에 대한 대수방정식은 다음과 같다.

\[a_p T_p = \sum a_{nb} T_{nb} + S + i \]

여기서 \(a, p, nb, S \)는 각각 계수, 현재격자, 이웃격자 및 생성항을 의미하며, \(i \)가 편성이완으로 사용된 항이다. 예를 들어 \(i \)를 다음과 같이 들 수 있다.

\[i = \rho \Delta V (\phi_p^{old} - \phi_p^{*}) / \Delta t \]

첫 번째식은 다시 아래와 같이 식어진다.

\[a_p T_p = \sum a_{nb} T_{nb} + S + \rho \Delta V (\phi_p^{old} - \phi_p^{*}) / \Delta t \]

만약 해가 수렴하으면 \(\phi_p^{old} = \phi_p^{*} \)이므로 원래 대수방정식의 본질은 간드러지 않게 된다. 맞게을 살펴보면 이완에서 사용자가 조작할 수 있는 부분은 분모에 존재하는 \(\Delta t \)이며 PII에서 아래 명령어로 조절된다.

\[RELAX(\phi, FALSDT, \Delta t) \]

\(\Delta t \)가 크면 I 값이 작아지므로 이완효과가 감소하며, \(\Delta t \)가 작으면 I 값이 커지므로 이완효과가 증대된다. 해석영역과 유동양상이 복잡할 수록 이완효과를 크게 해야하므로 \(\Delta t \)가 작아진다.

난류모델에서 KE와 EP 에 오류시간이완을 사용하는 경우, \(\Delta t \)는 난류특성시간에 기초해야 한다. 그러나 특성시간을 정량화하는 것이 어렵기 때문에 속도와 같은 값을 사용하거나 선형이완을 사용하는 것이 바람직하다.
제 4 장 수치해석

4-1. 수치해석 방법

자연계의 열 전달과 유체유동의 예측방법은 크게 실험적 연구방법과 수치적 연구방법(CFD)으로 구분되어 지며, 각 방법의 장단점을 표 3과 같다.

Table 1. Merits and demerits of experimental method and numerical method. 16)

<table>
<thead>
<tr>
<th>장점</th>
<th>실험적 연구방법</th>
<th>수치적 연구방법(CFD)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-상체 크기로 했을 시 물리적 현상을 정확히 예측가능</td>
<td>-해석에 요소되는 시간과 비용이 저렴</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-해석하고자 하는 형상과 경계조건을 쉽게 구현</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-해석한 모델 구간에 걸쳐 물리적 특성치를 얻을 수 있음</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-이상적인 조건 및 cirtical한 상태의 묘사가 가능</td>
</tr>
</tbody>
</table>

단점

-많은 경비와 시간 소요 |
-모형 실험시 상시율이 맞도록 실험조건을 맞추기가 어려움 |
-수치해석의 정확성 |

이와 같이 수치적 연구방법은 컴퓨터의 급속한 발전으로 개선 시간 및 비용 부분은 더욱더 절감되어지고 있다. 또한 수치적 연구방법의 단점인 수치해석의 정확성에 대한 문제도 새로운 모델들의 개발
고되고 있어 이 부분도 큰 발전이 있으리라 생각된다. 이렇게 수치적 예측방법 가운데 컴퓨터를 이용하여 물리적 현상을 예측하는 방법을 일반적으로 CFD(Computational Fluid Dynamics)이라 하며, 본 연구에서는 CFD모델을 통하여 cold spray에서 가스 및 입자의 전동에 관한 수치해석을 수행하였다.

우선 초음속인 노즐내부 및 출구의 유동장을 해석하기 전에, 올바른 데이터를 도출하기 위하여 유동장에 적절한 지배 방정식을 적용해야 하고 유동장에 대한 적절한 초기, 경계 조건을 주기 위해 열역학적 특성을 고려한 압축성 가스 이론에 대한 이론을 알아야 한다. 그리고 질량, 운동량, 에너지 및 난류에 대한 기본식으로부터 지배미분방정식을 만들고, 이러한 방정식을 유동장내에 적용해야 한다. 이러한 지배미분방정식으로는 보존형태의 일반방정식을 이용하며, 수치해석에 사용되는 수치기법은 공간차분 기법으로 유한체적법(17)(Finite Volume Method)을 이용하였다.

본 연구의 계산은 FLUENT V6.3를 이용하여 수치해석 연구를 수행하였다.

4-2. Mesh Generation

노즐 내부 및 외부의 유동을 조사하기 위하여 3D로 노즐 형상과 외부 유동장을 재작하였다. 본 수치해석에 사용된 노즐은 250mm의 노즐영상(65mm의 Nozzle Convergence 구간 + 180mm의 Nozzle Divergence 구간)을 가진 드 라발(De - laval)형상이고, 이를 재작한 후 노즐 출구로부터 50mm를 외부 유동장으로 설정하고, 50mm의 위치에 substrate를 설정하여 가스 속도 및 온도 변화에 대한 수치해석을 수행하였다. 연구에 사용된 노즐의 입구, 출구 위치 및 단면에 대한 개략도를 그림 16에 나타내었다. 여기에서 expansion ratio

43
는 노즐에서 가장 넓은 면적을 노즐의 가장 작은 면적으로 나누어 준 것을 뜻한다.

Fig. 16 Schematic diagram of nozzle geometry.

4.3 경계조건

노즐 내에서 입자의 가동을 해석하기 위한 경계조건을 표 1에 나타내었다. 주입 가스로는 질소 가스를 이용하였고, 가스의 주입 압력은 2.5MPa, 초기 온도는 773K, 입자의 초기 온도는 673K로 설정하여 해석하였다. 또한 유동장내의 가스는 이상기체상태를 가정한 압축성 유동으로 설정하였다. 그 이유는 기체 속도 마하 0.3을 기준으로 그 이상일 경우 비압축성에서 압축성 유동으로 전환되는데, 저온분사에서의 가스속도는 마하 0.3 이상이므로 압축성 유동으로 간주할 수 있다18). 단류 모델은 레이놀즈 응력이 평균속도 구배에 비
The document contains data on gas and particle properties, and conditions. Here is the table converted into structured text:

Table 2. Boundary condition of gas and particle

<table>
<thead>
<tr>
<th>Gas Type</th>
<th>Nitrogen, Ideal gas (compressible flow)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas</td>
<td></td>
</tr>
<tr>
<td>Initial pressure [MPa]</td>
<td>2.5</td>
</tr>
<tr>
<td>Initial temperature [K]</td>
<td>773</td>
</tr>
<tr>
<td>Turbulence model</td>
<td>K-ε model</td>
</tr>
<tr>
<td>Particle type</td>
<td>Cu-Sn20wt%</td>
</tr>
<tr>
<td>Particle</td>
<td></td>
</tr>
<tr>
<td>Initial temperature [K]</td>
<td>673</td>
</tr>
<tr>
<td>Density [kg/㎥]</td>
<td>8200</td>
</tr>
<tr>
<td>Diameter [㎛]</td>
<td>12</td>
</tr>
<tr>
<td>Flow rate [g/sec]</td>
<td>0.56</td>
</tr>
</tbody>
</table>

Table 3. Parameter of variation nozzle condition

<table>
<thead>
<tr>
<th>SLit</th>
<th>Circular</th>
<th>Change of neck area (mm)</th>
<th>Change of exit area (mm)</th>
<th>Change of neck shape (mm)</th>
<th>Change of exit shape (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Circular</td>
<td>change 1</td>
<td>change 2</td>
<td>change 3</td>
<td>change 4</td>
</tr>
<tr>
<td>1.0</td>
<td>4.52</td>
<td>2.76</td>
<td>3.56</td>
<td>4.04</td>
<td>4.48</td>
</tr>
<tr>
<td>4.0</td>
<td>12.20</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>18.0</td>
<td>30.0</td>
<td>20.0</td>
<td>20.0</td>
<td>20.0</td>
<td>20.0</td>
</tr>
<tr>
<td>650</td>
<td>650</td>
<td>650</td>
<td>650</td>
<td>650</td>
<td>650</td>
</tr>
</tbody>
</table>

45
제 5 장 해석 결과 및 고찰

5-1 기본 조건에 대한 유동장 해석

본 연구에서 기준 노즐로서 원형노즐과 비교가 되는 슬릿노즐의 경우, 노즐목 크기를 4.0x4.0㎜, 출구크기는 4.0x30.0㎜로 설정하였고 원형노즐의 노즐목과 출구의 지름은 각각 지름 4.52㎜, 12.38㎜로 설정하여 원형노즐과 슬릿노즐의 노즐목과 출구면적 및 E.R를 동일하게 하여 유동장을 비교하고, 출구로부터 50㎜까지 속도를 계산하였다.

그림 17(a)는 원형노즐과 슬릿노즐을 사용한 경우 노즐 출구부에 분사 후 50㎜까지 가스 속도 분포를 나타낸 것이다. 가스 분사 비교를 위하여 두 노즐 모두 수직, 수평 단면을 비교하였다. 원형인 노즐의 경우 출구 형성이 원형으로 수직, 수평 단면의 크기가 지름 12.38㎜로 동일하나 슬릿노즐의 경우 출구 형성이 직사각형이기 때문에 수직, 수평 단면의 크기가 각각 4.0㎜, 30.0㎜이고 충격파의 파형 또한 크기가 큰 수평 단면이 더 크다. 원형노즐의 경우 출구에서의 속도는 1050.3㎧, 출구로부터 50㎜ 떨어진 지점에서의 속도는 989.4%로 약 60%의 속도 감소를 보였다. 그림에서 보듯이 비교적 완만한 형태의 충격파가 생성되었고 속도의 감소도 크지 않았다. 반면 슬릿노즐의 경우 출구에서 1047.2%이고 출구로부터 50㎜ 떨어진 지점에서는 681.26%로 충격파의 형태가 비교적 크게 나타났으며 거리에 따른 속도의 편차가 크게 나타나는 것으로 나타났다. 이는 슬릿노즐의 비 대칭적인 형상에서 기인한 것으로 볼 수 있다. 그림 17(b)는 출구로부터 50㎜ 떨어진 지점에서의 원형노즐과 슬릿노즐의 가스속도 분포를 나타낸 것이다. 가스속도는 원형노즐이 989.4%, 슬릿노즐이 681.26%로 원형노즐이 더 빠른 가스속도를 나타내었다. 하지만 입계속도 이상의 속도가 존재하는 영역을 비교하기 위해 최대 분사
폭을 비교할 경우, 원형노즐의 경우 지름 12.38㎜로 일정하였으며 슬릿노즐의 경우 단폭이 4.0㎜이나 장폭의 길이가 30.0㎜로 슬릿노즐의 분사 폭이 더 길기 때문에 같은 시간내 더 넓은 면에 분사가 가능할 것으로 기대된다. 이때 장폭은 노즐 출구의 긴 변을, 단폭은 짧은 변을 의미한다.

![Gas velocity distribution of circle nozzle and slit nozzle](image)

Fig. 17 Gas velocity distribution of circle nozzle and slit nozzle (a) the gas spraying at vertical plane and horizontal plane, (b) gas spraying at 50㎜ from nozzle exit
원형노즐과 슬릿노즐에서의 전세적인 입자 궤적 속도 분포 및 입자 분사 면적 비교를 그림 18 (a), (b)에 각각 나타내었다. 그림 4(b)는, 원형노즐과 슬릿노즐에서 출구로부터 50㎜거리의 분사면을 출구크기인 30㎜을 기준으로 25%, 50%, 75%, 100%, 125%, 150%, 175%, 200%, 225%로 구획을 나누어 그 구획 내 입자 속도 분포를 분석하였다. 분석 결과, 원형노즐의 경우 입자의 절반 이상이 7.5㎜내에 존재하였고 가스속도 또한 반경방향에 따라 급격히 감소하였다. 그림 19에는 분사면에서 입자 분사특성을 나타내었는데, 이때 임계속도 이상의 속도를 갖는 입자들을 유효입자라 가정하고 그림 19(a)에서 입자의 분사효율은 분사된 전체 입자 중 유효입자의 분율을 가정하였다. 원형노즐에서 분사된 입자들은 대부분 노즐 중앙으로부터 15㎜ 내에서 분사되었고 그 이후 분사효율이 70%이하로 급격히 감소하였다. 반면 슬릿노즐은 전 분사면이 분사효율 90%이상의 고른 분포를 나타내었다. 이 중 95%이상의 분사효율을 갖는 면적을 계산하여 그림 19(b)에 나타내었고 이 면적을 유효면적이라고 가정하였다. 유효면적은 95% 이상의 유효입자들이 분사된 면적으로, 이 연구에서 유효면적의 분사효율 기준은 95%로 정한 이유는 일반적인 저온 분사 공정에서 코팅율이 최대 95%이기 때문이다. 원형노즐과 슬릿노즐의 유효면적을 비교하였을 때, 원형노즐의 유효면적은 15㎜², 슬릿노즐의 유효면적은 52.5㎜²로 계산되었다. 이는 입자수를 동일하게 하여 분사하였을 때 슬릿노즐이 더 넓은 영역에 많은 유효입자를 분사를 할 수 있음을 뜻한다.

가스 속도와 입자 속도 분포를 비교해 보았을 때 원형노즐의 경우 분사면까지 전체적인 가스 속도는 출구에서 1050.3㎜/초 출구로부터 50㎜ 떨어진 지점에서는 989.4㎜/초 가의 일정한 가스속도를 유지하며 분사되었으나 가스와 함께 분사된 입자들은 15㎜내외 좁은 범위에 국한되어 분사되었다. 반면 슬릿노즐 가스 속도는 출구의
1047.2%에서 출구로부터 50㎜ 떨어진 지점에서는 681.26%로 다소 느려졌으나 입자의 분포는 67.5㎜까지 넓게 분사되었다. 이를 통해 슬릿노즐이 원형노즐에 비해 같은 시간 내에 넓은 면적에 분사가 가능하여 코팅효율을 증가시킬 수 있을 것으로 기대된다.\cite{21,22}

![Fig. 18 Analysis of circle nozzle and slit nozzle (a) the particle spraying, (b) particle distribution at 50㎜ from nozzle exit](image)
Fig. 19 Analyze spraying plane for circle nozzle and slit nozzle
(a) spraying efficiency (b) efficiency area

5-2 형상 조건에 따른 노즐 내 가스 유동장 해석
그림 20(a)는 기준 노즐로 사용한 슬릿노즐의 출구부터 50㎜까지 10㎜씩 다섯면으로 분할하여 각 거리에 따른 입자 궤적 속도 분포를 계산한 것이다. 이를 통해 입자들이 50㎜ 쪽으로 분사될수록 입자 분사 면적이 점차 증가하는 것을 볼 수 있다. 그림 20(b)는 입자 분사효율이다. 입자들이 분사되는 출구 0㎜에서 20㎜까지는 분사효율이 96.4%로 동일하였으나 30㎜지점부터 점차 감소하였다.

노즐출구를 4.0x30.0㎜로 고정시키고, 노즐목 면적 변화(2.7x2.7㎜, 3.6x3.6㎜, 4.0x4.0㎜, 4.4x4.4㎜, 4.8x4.8㎜)에 따른 노즐 내 속도 및 온도 분포를 그림 21(a)에 나타내었다. 노즐목과 출구의 E.R은 각각 16.5, 9.3, 7.5, 6.2, 5.2이다. 노즐출구에서 가스의 속도 및 온도를 계산한 결과 각각 936.1%, 1003.4%, 1047.2%, 1022.4%, 1022.5%의 속도를, 338.2K, 285.2K, 240.9K, 269.3K, 270.0K의 온도를 나타내었다. 이 중 기준모델의 E.R인 7.5에서 가장 높은 가스 속도 1047.2%와 가장 낮은 가스 온도 240.9K를 보였다. 그러나 E.R가 7.5보다 크거나 작을 때에는 속도가 감소하고 온도가 증가하여 비교 노즐의 E.R 중 적정 E.R은 7.5로 판단된다.
Fig. 20 Analysis of distance exit to substrate at standard nozzle
(a) particle velocity distribution, (b) spray efficiency

노즐목을 4.0x4.0㎜로 고정시키고, 노즐출구 면적 변화(3.6x27㎜, 4.0x30.0㎜, 4.4x33㎜, 4.8x36㎜)에 따른 노즐 내 속도 및 온도 분포를 그림 21(b)에 나타내었다. 노즐목과 출구의 E.R는 각각 6.1, 7.5, 9.1, 10.8이다. 노즐출구에서 가스의 속도 및 온도를 계산한 결과 각각 955.5%, 1047.2%, 1036.7%, 997.7%의 속도를, 270.0K, 240.9K, 291.4K 335.4K의 온도를 나타내었다. 이 경우 E.R이 7.5와 9.1에서는 각각 1047.2%, 1036.7%로 비교 노즐 중 빠른 가스 속도를 보였지만 그 외 노즐에서는 가스 속도가 감소하였다.

그림 22(a)에서 보는 바와 같이 노즐의 E.R를 7.5로 고정시키고 노즐목의 형상 변화(4.52㎜(지름, 원형), 4.0x4.0㎜, 2.0x8.0㎜)에 따른 노즐 내 속도 및 온도 분포를 나타내었다. 노즐출구에서 가스의 속도 및 온도를 계산하였을 때, 각각 997.7%, 1047.2%, 953.8%의 속
Fig. 21 Analysis of gas velocity and gas temperature for (a) variation of nozzle neck area (b) variation of nozzle exit area.

도를, 287.2K, 240.9K, 331.0K 의 온도를 나타내었다. 노즐목의 종횡
비가 서로 다른 2.0x8.0㎟에서 가장 낮은 가스 속도와 가장 높은 온도를 나타내었는데, 이는 노즐 내 유동장이 가장 급격히 변하는 노

Fig. 22 Analysis of gas velocity and gas temperature for (a) variation of nozzle neck shape (b) variation of nozzle exit shape
즐목에서 직사각형 노즐목의 비대칭적 형상에 기인한 것으로 추정된다.

그림 22(b)는 노즐의 E.R를 7.5로 고정시키고 노즐목 형상과 크기를 고정시키고 노즐출구의 형상 변화(3.6x33.3㎟, 4.0x30.0㎟, 4.4x27.3㎟)에 따른 노즐 내 속도 및 온도 분포를 나타낸 것이다. 노즐출구에서 가스의 속도 및 온도를 계산한 결과, 각각 974.0㎧, 1047.2㎧, 1000.0㎧의 속도를 나타내었다. 노즐출구의 단폭이 3.6㎜보다 4.0㎜로 길어지고 장폭이 33.3㎜으로 길어졌을 경우, 가스 속도가 증가하였으나 단폭이 4.4㎜로 더 증가하고 장폭이 30.0㎜이하로 줄어들자 오히려 속도는 감소하였다.

5-3 형상 조건에 따른 입자 속도 분포 해석

그림 23은 각 노즐출구 크기를 고정시킨 후, 노즐목 크기에 따른 분사면에서의 입자계적 속도 분포를 각각 (a) 분사효율 (b) 유효면적으로 분석한 것이다. 그림 23(a)에서 분사효율은 노즐의 E.R이 16.5로 가장 큰 case 1을 제외한 나머지 노즐들의 분사효율은 대체로 유사한 분포를 나타내었다. Case 1은 노즐목과 출구의 E.R 차이가 다른 노즐에 비해 너무 크기 때문에 가스 유동 및 입자 분사가 제대로 되지 않아 분사효율이 낮은 것으로 판단된다. 또한 그림 23(b)의 유효면적을 계산한 결과, 제대로 입자 분사가 이루어지지 않은 case 1은 전체 분사면의 분사효율이 95%에 도달하지 못해 유효면적은 개선이 불가하였고, 나머지 노즐의 유효면적 중 가장 넓게 계산된 것은 52.5㎟인 case 3으로 나타났다. 노즐목 크기에 따른 전체적인 분사효율 및 유효면적을 검토하였을 때 우수한 노즐은 case
로 판단된다.

Fig. 23 Analyze spraying plane for variation of nozzle neck area
(a) spraying efficiency (b) efficiency area
노즐목 크기에 따른 입자 속도 분포 분석과 마찬가지로 노즐출구 크기에 따른 입자계적 속도 분포를 같은 방법으로 분석해 보았다.
그림 24(a)의 분사효율 중 case 6, case 7, case 8은 유사한 입자 궤적 속도 분포 경향성을 보였다. 반면 case 9의 경우, 가장 넓은 영역에 걸쳐 입자를 분사하였으나 분사면적 중 노즐 중앙에서 15㎟ 이후부터 분사효율이 크게 감소하여 다른 노즐들에 비해 분사효율이 저하된 것을 알 수 있다. Case 9의 전체 입자 분사 영역이 넓은 이유는 노즐출구 크기가 다른 노즐들에 비해 4.8x36㎟로 가장 크기 때문에 입자들이 분사될 수 있는 공간이 넓어져 입자 분사영역 또한 넓어진 것으로 보인다. 또한 그림 24(b)는 유효면적으로서, 52.5㎟로 가장 넓은 유효면적이 계산된 case 6, case 7과 달리 case 9는 15.0㎟로 가장 적게 나타났다. case 6의 경우 전체 입자 분사 면적은 60㎟로 비교 노즐 중 가장 적었지만, 그 중 유효입자가 95%이상 분포된 유효면적을 계산한 결과, 52.5㎟로 case 7과 함께 비교 노즐 중 가장 넓게 나타났다. 노즐출구 크기에 따른 분사효율 및 유효면적을 토대로 우수한 노즐은 case 6, case 7로 볼 수 있다.

또한 그림 25는 E.R를 7.5로 고정하고 노즐목형상에 따른 입자궤적속도 분포 분석 결과를 나타낸 것이다. 그림 25(a)의 분사효율의 경우, 세가지 형태의 노즐목 중 원형과 정사각형이었던 case 10과 case 11의 입자궤적속도 분포는 유사한 분포를 나타내었으나 직사각형 노즐목인 case 12는 가장 낮은 분사효율을 나타내었다. 이는 case 10과 case 11의 노즐목 형상이 대칭형성이 반면, case 12는 비대칭형성이 형상의 차이로 판단된다. 또한 그림 25(b)에서 유효면적을 분석한 결과 정사각형 노즐목 case 11의 면적이 52.5㎟로 가장 넓었고, 비대칭형인 직사각형 노즐목 case 12의 면적이 37.5㎟로 가장 적게 나타났다.

마지막으로 각 노즐 출구의 장/단폭 길이를 서로 다르게 하여 그에 따른 노즐의 입자 궤적 속도 분포 분석을 그림 26에 나타내었다. 노즐들의 분사효율을 나타낸 그림 26(a)에서 장폭이 33.0㎜로 가장 길
고 단폭이 3.6㎜로 가장 짧은 case 13의 분사효율은 다른 노즐에 비해 우수한 것으로 나타났다. 반면 장폭이 27.0㎜, 단폭이 4.4㎜로 가장 짧은 case 15의 경우 분사효율이 가장 저하되었다. 또한 분사면 중 각 노즐의 유효면적을 계산하여 그림 26(b)에 나타내었는데 장폭

Fig. 24 Analyze spraying plane for variation of nozzle exit area
(a) spraying efficiency, (b) efficiency area
이 길이지고 단폭이 짧아질수록 유효면적이 더 넓게 계산되었다. 노즐출구의 형상에 따른 입자 분포분석 결과를 종합하였을 때 출구형상이 직사각형인 슬릿노즐 형상에 가까워 질수록 입자 분사효율과 유효면적이 우수한 것으로 판단된다.

Fig. 25 Analyze spraying plane for variation of nozzle neck shape (a) spraying efficiency (b) efficiency area
Fig. 26 Analyze spraying plane for variation of nozzle exit shape
(a) spraying efficiency (b) efficiency area
제 6 장 결론

본 연구에서는 수치해석을 통해 cold spray 공정에서 사용하고 있는 광폭노즐의 형상변화를 통하여 분사 기판 면에서 입자 분포, 유 효면적 그리고 분사효율을 분석하였다.

기존에 사용된 원형노즐과 슬릿노즐의 가스 유동장 속도 비교시, 원형노즐은 슬릿노즐에 비해 출구부터 50㎜ 떨어진 지점까지 빠른 가스속도를 나타내며 분사되었다. 그러나 입자 속도 계층 분포 분석 결과, 원형노즐 분사면은 대부분 입자가 노즐 중앙에 분사되고 그 이상에는 거의 분사되지 않은 반면 슬릿노즐의 경우 전 분사면에 고르게 분사되어 분사효율이 우수한 것으로 나타났다.

노즐 형상 조건에 따른 노즐 내 가스 속도와 온도 변화 분석시, 노즐출구 면적을 고정시키고 노즐목과 노즐출구 면적의 크기를 각각 변화시켰을 경우, 노즐목과 노즐분리 면적이 증가할수록 가스속도는 증가하다. expansion ratio가 7.5일 때 가장 높은 속도를 나타내었고, 그 이상으로 면적이 증가할 시 가스속도는 감소하였으며 온도는 가스속도와 상반되는 경향성을 보였다. E.R을 7.5로 고정시키고 노즐목과 노즐출구 형상을 각각 변화하였을 경우, 중형비가 서로 다른 직사각형 노즐목 형상이 가장 낮은 가스 속도를 나타내었다. 그 이유는 노즐 내 유동장이 가장 급격히 변하는 노즐목에서 원형, 정사각형과 같은 대칭형 노즐목보다 직사각형 노즐목의 비대칭적 형상에 기인한 것으로 사료된다. 또한 노즐출구의 장폭이 점차 짧아질수록 가스 속도가 빠른 경향을 보였으나 장폭의 길이가 30㎜이하가 되자 오히려 느린 가스 속도를 나타내었다.

노즐 형상 조건에 따른 분사면에서의 입자 속도 분포 분석시, 노즐출구 면적을 고정시키고 노즐목 면적의 크기를 변화시켰을 경우, 비교 노즐 중 expansion ratio가 16.5로 가장 큰 노즐이 노즐목과 출구간 유동이 제대로 이루어지지 않아 노즐 중앙에 대부분의 입자가
집중 분사된 후 현저하게 감소하였고 분사된 전구간의 분사효율이 95%에 미치지 못해 유효면적의 계산이 불가하였다. 또한 노즐목 면적을 고정시키고 출구크기를 변화하여 분사면에서 입자 분포 분석의 경우, expansion ratio가 가장 큰 노즐이 전체적으로 가장 넓은 구역에 입자를 분사하였으나 노즐 중앙으로부터 15㎜이후 분사효율이 크게 감소하였고 유효면적 또한 비교 노즐 중 가장 작게 나타났다. E.R을 7.5로 고정시키고 노즐목 형상을 변화하였을 때, 직사각형 노즐목 입자 속도 분포 분석 결과 원형 및 정사각형과 같은 다른 대칭형 노즐목에 비해 성능이 떨어지는 것으로 드러나 노즐 목 형상은 원형이나 정사각형과 같은 대칭형 노즐이 좋은 효율을 보일 것으로 기대된다. E.R을 7.5로 고정시키고 출구의 장/단축 길이변화를 통한 노즐형상 해석시 슬릿노즐 형상에 가까울수록 분사 효율 및 유효면적의 우수한 특성을 드러내어 저온 분사 공정을 통한 슬릿노즐의 적용 가능성을 보였다.
제 7 장 참고문헌

감사의 글

2년간 대학원 생활을 마무리 지으며 도움을 받았던 분들께 감사의 마음을 전하고자 합니다.

무지한 저의 가능성은 보아 연구할 수 있도록 허락해주시고 항상 용기와 격려를 아끼지 않으신 지도교수님 한정환 교수님께 가장 큰 감사를 드립니다. 더 좋은 결과를 위해 성과를 올리지 못하고 휴업하게 되어 송구하오니 사회에 나가 어떤 일을 하게 되더라도 교수님의 가르침을 항상 명심하며 연구자의 자세로 살겠습니다. 또한 미흡한 논문을 심사해주신 김목순 교수님, 유병돈 교수님 그리고 금속공학과 모든 교수님들께 감사드립니다.

2년간 연구실 생활을 하면서 이제는 가족들만큼 정든 재료공정연구실 식구들, 방장 종인오빠, 병덕오빠, 혼재오빠, 경수오빠, 의현오빠, 민규오빠 그리고 은정언니에게 항상 고맙고 미안한 마음을 전하며 합금방 기현오빠, 도형오빠, 과사무실 향숙언니, 김지예 조교님 및 금속공학과 원우회 모든 학생들에게도 대단히 감사드립니다.

인천올라와 바쁘다는 명령으로 연락도 제대로 못해주도 만나면 반겨졌던 해림, 고운, 유정, 승아, 은정, 소현, 해민, 선미언니, 정목오빠, 창현오빠, 기열, 용준, 그리고 이제는 정말 몇지름 성공할 때까지 공기같은 너석인 현주, 고맙고 사랑한다.

제가 어떤 결정을 내려도 그 의견과 결정에 동의해 주시고 지지해 주신 우리 부모님, 정말 감사합니다. 이제까지 못난 모습만 보였지만 미래에 발전할 제 모습 항상 지켜봐주셔요. 그리고 하나씩에 없는 동생 선영이, 좋은 언니가 되어 내게 모범이 되도록 노력하세요.

마지막으로 많이 잘해주고 청구하지도 못하고 미움짓만 꼬라졌는데도 항상 저를 믿어준 든든한 남자친구 변승용군에게 미안하고 고맙고 또 사랑한다고 전합니다.

또한 지금 이 논문을 읽어주신 분께 아주 조금이나마 도움이 되셨길 바랍니다.