A tile-based topographical classification scheme using aerial LiDAR and image data

2011年 2月

仁荷大學校 情報通信大學院

情報工學科

李成圭
A tile-based topographical classification scheme using aerial LiDAR and image data
이 논문을 李成圭의 碩士學位論文으로 認定함

2011年 2月

主審 印

副審 印

委員 印
요 약

최근 국토의 구성 및 변화를 탐지하기 위해서 항공 라이다 및 항공영상 데이터를 활용하여 지표의 유형을 정확하게 분류할 수 있도록 여러 지형 분류 기법들이 연구되고 있다.

특히 기존 점 기반 분류 방법의 비효율성과 단점을 극복하기 위해 사각형 태일로 지형을 분할하고 분할된 태일 단위로 분류를 수행하는 태일 기반 방법은 분류 속도 면에서 향상되었지만, 태일 기반 방법은 좁은 영역의 복잡한 환경을 분류함에 있어서 분류 정확도가 저하된다는 단점을 가지고 있다.

본 논문에서는 분류 정확도를 높이기 위해 항공 라이다 데이터와 같은 크기로 분할된 항공영상은 항공 라이다 데이터와 같은 크기로 가공하였으며, 이를 이용하여 유사도 관단을 위한 여러 이미지 처리 기법들을 통해 특징들을 선정하여 활용하는 새로운 태일 기반 지형 분류 기법을 제안하였다. 또한 데이터 마이닝 도구 WEKA를 이용하여 분류모델별 정확도의 특성을 비교하여 분류기법을 선정하고, 각 특징들을 추출하여 사용함에 있어서 정확도에 미치는 영향과 시간 소요를 분석하여 적합한 특징정보들을 제시하였다.

본 논문에서 제시된 방법을 이용하여 항공영상과 항공라이다 데이터를 복합하여 활용하는 방법으로 태일 단위의 분류를 시도할 경우 기존 태일 기반 기법에 비해 분류 속도는 약 9.16%정도 향상시킬 수 있으며 그에 따른 시간 소요는 392ms 정도인 것으로 분석되었다.
Abstract

Recently, topographical classification schemes using LiDAR data have been widely studied and used for identifying land configuration and detecting configuration changes. Tile-based schemes in which classification of land types is performed in the units of pre-split tiles have been proposed to overcome the classification inefficiency, the drawback of point-based schemes in which classification is done based on points of LiDAR data. However, the tile-based schemes are turned out to having declined classification accuracy against complicated configurations in narrow areas.

In this thesis, to improve the classification accuracy, new tile-based topographical classification scheme are proposed in which several discriminative characteristics of the corresponding pre-split aerial image are also considered to determine tile’s topographical class. From several candidate characteristics used in previous image understanding researches, most cost-effective ones are selected based on the discriminative power and computation efficiency, then the most accurate classification model is selected among several candidates constructed and evaluated by using data mining tool, WEKA. According to the experimental results, the proposed topographical classification scheme is able to improve 9.16% of the classification accuracy at the expense of 392ms increased feature extraction time than the previous tile-based scheme.
목 철
요 약
Abstract
목차
1. 서론
2. 관련연구
 2.1 항공 라이다 데이터를 이용한 지형 분류 기법
 2.2 항공 영상을 이용한 지형 분류 기법
3. 항공 라이다와 영상 데이터를 이용한 타일 단위 지형 분류 기법
 3.1 특정정보의 선정
 3.1.1 항공 라이다 데이터 분류를 위한 특정정보의 선정
 3.1.2 항공 영상 데이터 분류를 위한 특정정보의 선정
 3.2 항공 라이다와 영상 데이터를 이용한 지형 분류 시스템의 구성
 3.2.1 학습 과정
 3.2.2 테스트 과정
 3.3 적합한 분류모델과 영상 특정정보의 선정
 3.3.1 분류모델의 선정
 3.3.2 영상 특정정보의 선정
4. 실험 및 평가
 4.1 실험에 사용된 데이터
 4.2 특정 유효성의 유효성 판단
 4.3 지형분류 실험
5. 결론 및 향후 연구
1. 서 론

최근 산림의 분포, 자연재해, 해안선의 변화 및 도심지 구조의 변경 등
을 모니터링하기 위해 항공 라이다 데이터를 이용하여 지표면을 분류하
는 여러 방법들에 대한 논의가 활발하게 진행되고 있다. 항공 라이다 데
이터는 일반적으로 x, y, z 등 3차원 좌표 정보와 반사점도 등을 포함하
는 데이터이다. 이런 항공 라이다 데이터를 이용하여 지표면을 분류하는
방법은 점 기반 방법, 폐처 기반 방법, 타일 기반 방법으로 분류해 볼 수
있다.[1]

항공 라이다 데이터로부터 지형의 유형을 분류하기 위한 방법에는 일
반적으로 점 기반 방법이 널리 활용되고 있는데 이는 점들 사이의 인접
성, 기울기 등의 속성을 조합하여 분류기를 수립하고 지표면의 비 지
표면을 구분하는 방법이다.[2] 하지만 종록된 연구에 따르면, 연산량의
비 효율성을 야기하여 이를 개선하기 위한 방법으로 폐처 기반 방법이
제시되었다.

폐처 기반 방법은 점들 사이의 인접성 관계를 그래프(graph) 구조로
모델링하여 저장하고 이를 폐처 형태로 그룹화하여 지형을 분류하는 방
법으로서 이러한 방법은 오류에 대한 건고성을 향상시키고 기존 점 단위
방법보다 연산량과 시간적인 측면에서 비용 절감 효과가 있다는 장점을 가
진다고 한다.[3] 하지만 그래프를 구성하는 과정에서 인접성에 대한 판단이
이뤄져야 하며 힘(heap) 구조의 저장공간 상에 점 군 전체의 거리 정
보를 저장해야 한다는 점에서 연산량과 저장 공간상의 문제점을 가지
고 있었다. 이를 개선하기 위한 방법으로 최근의 연구에서는 라이다 데
이터를 타일 단위로 분할하여 신속하게 지표면을 분류할 수 있는 타일 기반 지형 분류 방법에 대한 연구가 진행되고 있다. [1,4]

타일 기반 지형 분류 방법은 항공 라이다 데이터를 일정한 크기의 사각형 모양의 타일로 분할하고 각 타일의 점 분포 패턴 및 고도, 반사점도 등을 이용한 특정들을 추출하여 이들을 바탕으로 지표면을 분류하는 방법이다. 타일 기반 방법은 기존 점 기반 방법이나 패치 기반 방법에 비해서 경계선 추출 영역을 한정하고 점이 아닌 타일을 기본단위로 분류를 수행하여 정상성을 제거함으로서 연산 속도를 증진시킨다는 장점을 가지고 있지만, 복합클래스를 포함하여 지표면 유형에 대한 클래스의 수가 늘어날 경우 기존 방법에 비해서 정확성이 떨어진다는 단점을 가지고 있다.

본 연구에서는 항공영상으로부터 추가적인 특정정보들을 추출하여 라이더 데이터 기반의 분류 기법의 정확도를 보정하는 방법을 제시하였다. 본 연구에서는 기존 타일 기반 방법의 분류 정확도를 향상시키기 위해 항공영상을 항공 라이더와 같은 크기의 타일로 분할한 후 각 영상 조각 (image segment)의 특징들을 추출하여 타일의 지표면 유형 결정에 반영함으로써 분류 정확도를 향상시킬 수 있음을 보였다.

본 논문의 구성은 다음과 같다. 2절에서는 관련 연구로서 항공 라이더 데이터 및 항공 영상에 기반한 지형 분류에 관련된 연구들을 간략하게 소개하고, 이미지의 유사도를 분석하기 위한 여러 처리 기법들을 소개한 다. 3절에서는 본 연구에서 적용한 라이더 데이터의 특정정보들과 이미지의 특정정보들을 소개하고 항공 라이더와 항공영상 데이터를 이용한 지형 분류 시스템의 구성과 동작 과정을 설명한다. 4절에서는 데이터 마이닝 도구 WEKA를 사용하여 항공 라이더 데이터의 특정정보들을 이용한 분류결과와 항공 영상을 이용한 분류결과, 그리고 두 가지 특정정보들을 융합하여 활용한 분류결과들을 분석하여 비교 설명한다. 마지막으 로 5절에서는 결론 및 향후연구로 맺는다.
2. 관련 연구

2.1 항공 라이다 데이터를 이용한 지형 분류 기법

항공 라이다 데이터를 이용하여 지형을 분류하는 방법으로는 계계의 점 단위로 다른 점들과의 인접성을 판단하거나 점들을 그룹화(grouping)하여 처리하는 지기반 방법과 임의 크기의 셀 혹은 타일 단위로 분할하고 이를 분류 단위로 사용하는 셀, 타일 기반 방법으로 구분할 수 있다.

 먼저 점 단위 지형 분류 기법은 [그림 1]과 같이 각 점을 중심으로 인접성이 수립되는 원통형의 영역을 설정하고 해당 평면내의 공분산 행렬(covariance matrix)의 고유 값(eigen value)을 이용하여 이방성, 평면성, 구형성, 산형성 등의 특징을 정의하고 이를 이용하여 점 단위 분류를 시도하였다. 하지만 이러한 점 기반 분류 방법의 경우 각 점 사이의 인접성을 정의하기 위한 과정에서 점의 개수 혹은 그 제곱에 비례하는 계산량을 필요로 하기 때문에 연산량의 측면에서 비효율성을 초래한다. [3]

![그림 1] 점 기반 방법 지형 분류 모델
 이를 개선하기 위한 방법으로 점을 그룹화(grouping)하고 분할(segmentation)하여 군집(cluster)을 생성하고 생성된 군집의 특징정보를 이용하여 지표점과 비 지표점을 구분하는 방법이 연구되었다. 특히, [3]은 2차원 영상의 픽셀단위 그룹화 방법에 착안하여 3차원 점 집합을 [그림 2]와 같이 그래프(graph)형태의 구조로 저장하고 인접성이 수립되는 점들 사이의 거리를 계산하기 위해 힙(heap) 구조로 저장하여 처리속도 면에서 효율성을 향상시키는 방법을 제시하였다. 이 후 평면계수를 이용하여 근사오차가 작은 초기패치들을 생성하고 반복확장(iterative growing)이라는 과정을 통해 점차적으로 표면패치로 성장시키는 최종적으로 표면 패치단위로 저장을 분류한다. 하지만 이 방법은 초기 점 상호간의 인접성을 파악하여 그래프 모델을 생성하는 과정과 각 점들 사이의 거리를 힙 구조로 정리하는 과정에서 점의 개수에 비례하는 연산량과 저장 공간을 필요로 한다. 반면 아니라 패치와 점 혹은 패치와 패치 사이의 인접성을 파악하고 성장시키는 과정에서 점 단위로 인접성을 판단하여 추가적인 연산 소요를 발생시킨다는 문제점을 가지고 있다.[1]

[그림 2] 패치 기반 방법 성장 분류 모델

셀 기반의 정형분류 방법은 연산량이 많고 높은 단점을 가지지만 점 단위
분류기법에서 연산의 속도를 향상시키기 위한 방법의 일환으로 [그림 3]과 같은 셀(혹은 타일)로 정의되는 일정 사각형 모양의 영역으로 전체 데이터를 분할하여 처리되는 기법들이 연구되었다. [4]에서는 지형 분류를 위해 항공 라이다 데이터의 한변의 길이를 5m 혹은 10m 단위의 사각형 셀로 분할하고 지표면을 9가지 영역으로 정의하였다. 이후 분할된 셀로부터 사행도(skewness), 첨예도(kurtosis), 수목의 높이(vegetation height) 등의 여러 가지 특성을 추출하고 이를 경험적 모델을 통해 분류하여 높은 분류 정확률을 얻는 것으로 분석하였다.[4] 또한 본 연구의 선행 연구에서도 항공 라이다 데이터를 적정 크기의 타일 단위로 분할하여 지형 분류 모델을 설계하는 효과를 분석하기 위해 전라남도 장성지역의 항공 라이다 데이터를 각각 5m × 5m, 10m × 10m, 20m × 20m로 분할하여 지형 분류 예측 정확도를 비교하여 10m × 10m의 경우 높은 지형 분류 정확도를 갖는 것으로 분석한 바 있다.[1]

[그림 3] 셀 기반 방법 지형분류 모델

이러한 타일 기반의 방법은 기존에 연구되었던 점 기반 방법이나 배열 기반 방법에 비해 속도가 빠르다는 장점을 가지고 있지만, 타일의 클래
스가 복합타일을 포함하여 다양해지는 경우 경확도가 낮아진다는 단점을 가지고 있다.

2.2 항공 영상을 이용한 지형 분류 기법

항공 영상을 이용한 기존의 연구에서는 연산자나 필터 등을 이용하여 경계선을 추출하여 이를 분류에 활용하였다. 하지만 이런 방법들은 주로 픽셀 단위의 연산을 통해 항공 영상을 분석하고 특정 요소를 추출해 내는 방법으로서 본 논문에서 제택하고 있는 타일 단위의 지형 분류 기법에 적용하기에는 적합하지 않다.

타일 단위의 지형분류에 항공 이미지의 분류 기준을 추가하기 위해서는 경계선, 색상, 밝기 등 타일 내 이미지의 전역적 특성을 고려하여 수치 혹은 분류기준이 될 수 있는 문자열 형태의 데이터로서 특징들을 나타낼 수 있어야 할 것이다. 본 절에서는 항공영상에서 중요한 분류기준으로 활용될 수 있을 것으로 예측되는 이미지의 특징들을 예측하고, 그에 따른 기법들을 소개하였다.

첫 번째 고려요소로서 항공영상은 수목영역, 건물영역, 도로영역 등 각각의 지형 영역에 따라 경계선의 패턴들이 다르게 나타날 것이다. 예를 들어 건물영역에서는 직각으로 꾸어지는 직선의 반듯한 형태의 패턴이 자주 나타날 것이고, 숲 영역에서는 다수의 불규칙한 경계패턴들이 구축될 것이다. 따라서 영상처리 분야에서 널리 연구되고 있는 이미지의 내의 경계선을 추출하고 경계선으로부터 특징을 도출하기 위한 방법을 본 연구에서 이용할 수 있을 것이다. 특히, [7]에서는 [그림 4]와 같이 소벨
필터(sobel filter)를 적용하여 영상 내부에서 일종의 경계선이라고 할 수 있는 에지 지도(edge map)를 작성하고 추출된 선을 따라 워터 필링 알고리즘(water filling algorithm)을 적용하여 최대 분기 횟수(max fork count)와 최대 분기 길이(max fork length) 등을 이용하여 특정들을 정의하고 이를 이용하여 이미지들 상호간의 유사도를 분석한 바 있다.

[그림 4(a)] 소벨 필터의 적용 [그림 4(b)] 워터 필링 알고리즘
워터 필링 알고리즘은 필터를 이용해 추출된 경계선을 이용하여 한 글
먹셀로부터 시작하여 연결되어 있는 마지막 막셀까지의 분기, 길이 등을
특징으로 활용하는 기법으로서 영상 처리 분야에서 글자인식, 이미지 유
사도 판단 등의 용도로 널리 활용되고 있다.

항공영상에 있어서 두 번째의 고려사항은 이미지의 내부의 패턴 정보
이다. 불규칙적 인 수목의 패턴과 대체로 낮은 명도로 갖는 도로의 패턴,
그리고 건물의 패턴은 서로 다른 성향으로 나타날 것이라고 예측된다.
GLCM(grey level co-occurrence matrix)은 이미지를 흑백(gray scale)화
하여 그 명도를 바탕으로 맵을 생성하여 패턴의 개수를 헤아려 작성된
행렬(matrix)이다. 만약 그림 5과 같이 흑백의 정도를 3단계로 분할한다
고 하면 이미지의 가로방향의 GLCM은 [그림 5]의 패턴 맵을 통해 패턴
의 형성 반도를 바탕으로 히스토그램 형태의 행렬이 생성된다.

<table>
<thead>
<tr>
<th>Pattern</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>1</td>
<td>1.0</td>
<td>1.1</td>
<td>1.2</td>
<td>1.3</td>
</tr>
<tr>
<td>2</td>
<td>2.0</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
</tr>
<tr>
<td>3</td>
<td>3.0</td>
<td>3.1</td>
<td>3.2</td>
<td>3.3</td>
</tr>
</tbody>
</table>

[그림 5(a)] GLCM 이미지 분석 [그림 5(b)] GLCM 패턴 맵

분포하면 큰 값을 갖는다.

\[\text{Homogeneity} = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \frac{1}{1 + (i-j)^2} g(i,j) \] [식 1]

\[\text{Contrast} = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} (i-j)^2 g(i,j) \] [식 2]

\[\text{Correlation} = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} g(i,j) \left(\frac{(i-\mu_i)(i-\mu_j)}{\sqrt{\sigma_i^2\sigma_j^2}} \right) \] [식 3]

\[\text{Energy} = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} g(i,j)^2 \] [식 4]

\[\text{Entropy} = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} g(i,j)(-\ln(g(i,j))) \] [식 5]

[그림 6] 색상, 모양, 위치정보를 활용한 지역 기반 이미지 색인

[9]는 이미지의 각 픽셀을 양자화(quantization)하여 미리 정의된 25개의 색상 테이블로 매핑(mapping)시키고 서로 인접해 있는 픽셀을 하나의 조각(segment)으로 묶어 조각 내부의 픽셀 수가 일정 일계값 이상일 때 그 조각의 색상을 주요 색상으로 선정하여 특정으로써 활용하는 방안을 제시하였다. 항공영상의 특징으로서 수목, 도로, 물 등의 대부분 색상이 일정한 영역의 경우 본 논문에서 제시한 색상 특징들이 중요한 판단기준으로서 작용할 수 있을 것이라고 판단된다.

항공영상의 유사도를 분석하는 방법으로서 고려할 마지막 특징은 영상의 방향성이다. 건물, 도로와 같은 인공적인 시설들은 대부분 일정한 방향으로의 방향성을 가지고 있을 것이다. 하지만 수목, 초원 등 자연적 지형지물의 경우 일정한 방향성을 가질 수 없이 분포할 것이다.

[10]에서는 [그림 7]과 같이 영상을 일정 개수로 분할하여 이미지를 흑백(gray scale)으로 변환하고 각각의 영역을 다시 여러개의 영상 블록(image-block)으로 나누어 필터를 적응하여 방향성을 체크하고 영역을
방향성에 따른 다섯 종류의 에지(Edge)로 합의하여 각 영역에 따른 히스토그램을 작성하여 이를 이미지의 유사도를 분석하는 척도로서 활용하였다.

[그림 7] MPEG-7 에지 히스토그램(Edge Histogram) 방법

항공영상에 있어서 수목, 조류와 같은 자연적 지형지물과 도로, 건물과 같은 인공적 구조물 사이의 변별력을 방향성의 분석을 통한 특징정보를 통해 확보할 수 있을 것이라고 예측된다.
3. 항공 라이다와 영상 데이터를 이용한 타일

단위 지형 분류 기법

본 장에서는 항공 영상과 항공 라이다 데이터를 이용한 타일 단위 지형 분류 기법을 적용함에 있어서 특정정보의 선정 과정과 시스템 동작 과정을 설명하였다.

3.1 특정정보의 선정

3.1.1 항공 라이다 데이터를 이용한 특정정보의 선정

항공 라이다 데이터의 특정정보는 기본적으로 본 연구의 선형연구[1]에서 제시한 바와 같이 고도 관련 특정 13가지, 방사정도 관련 특정 14가지 기타 후보 특정 5가지를 포함하여 총 32가지로 선정하였다.

선정된 32가지의 특정정보는 아래[표1(a)]에서 제시하였다.

<table>
<thead>
<tr>
<th>고도관련 특성</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attitude_avg</td>
<td>고도의 평균</td>
</tr>
<tr>
<td>Attitude_var</td>
<td>고도의 분산</td>
</tr>
<tr>
<td>Attitude_skewness</td>
<td>고도의 사항도</td>
</tr>
<tr>
<td>Attitude_kurtosis</td>
<td>고도의 침예도</td>
</tr>
<tr>
<td>maxZRate</td>
<td>전체 포인트중에 최대 고도를 갖는 포인트의 비율</td>
</tr>
<tr>
<td>minZRate</td>
<td>전체 포인트중에 최소 고도를 갖는 포인트의 비율</td>
</tr>
<tr>
<td>NorthGradient</td>
<td>북서방향 기울기</td>
</tr>
<tr>
<td>WestGradient</td>
<td>서서방향 기울기</td>
</tr>
<tr>
<td>EastGradient</td>
<td>동서방향 기울기</td>
</tr>
<tr>
<td>SouthGradient</td>
<td>남서방향 기울기</td>
</tr>
<tr>
<td>difference_each_return</td>
<td>1차 반환 고도값 평균과 2,3,4차 반환 고도 평균의 차이</td>
</tr>
<tr>
<td>slope_EW</td>
<td>동서 양쪽 가장자리 부근 평균 고도의 차이</td>
</tr>
<tr>
<td>slope_NS</td>
<td>남북 양쪽 가장자리 부근 평균 고도의 차이</td>
</tr>
</tbody>
</table>
표 1(b) 반사값 관련 후보 특징정보

<table>
<thead>
<tr>
<th>반사값 관련 특성</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensity_avg</td>
<td>반사값의 평균</td>
</tr>
<tr>
<td>Intensity_var</td>
<td>반사값의 분산</td>
</tr>
<tr>
<td>Intensity_skewness</td>
<td>반사값의 사향도</td>
</tr>
<tr>
<td>Intensity_kurtosis</td>
<td>반사값의 첨예도</td>
</tr>
<tr>
<td>Inten_max</td>
<td>반사값의 최대 값</td>
</tr>
<tr>
<td>Inten_min</td>
<td>반사값의 최소 값</td>
</tr>
<tr>
<td>diff_Inten_maxmin</td>
<td>반사값의 최대 값과 최소 값의 차</td>
</tr>
<tr>
<td>diff_Inten_maxavg</td>
<td>반사값의 최대 값과 평균의 차</td>
</tr>
<tr>
<td>diff_Inten_avgmin</td>
<td>반사값의 평균과 최소 값의 차</td>
</tr>
<tr>
<td>Separated_inten_rate</td>
<td>2,3,4차 반환값의 개수/1차 반환값의 개수 비율</td>
</tr>
<tr>
<td>Separated_Inten_avg1</td>
<td>1차 반환 반사값의 평균</td>
</tr>
<tr>
<td>Separated_Inten_avg2</td>
<td>2차 반환 반사값의 평균</td>
</tr>
<tr>
<td>Separated_Inten_avg3</td>
<td>3차 반환 반사값의 평균</td>
</tr>
<tr>
<td>Separated_Inten_avg4</td>
<td>4차 반환 반사값의 평균</td>
</tr>
<tr>
<td>nonZeroReturn</td>
<td>반사값이 0이 아닌 포인트의 개수</td>
</tr>
</tbody>
</table>

표 1(c) 기타 후보 특징정보

<table>
<thead>
<tr>
<th>특성</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>inten_z</td>
<td>반사값의 평균 / 고도의 평균</td>
</tr>
<tr>
<td>area_density</td>
<td>타일내 3x3 구역에서 밀도의 최대 최소 비</td>
</tr>
<tr>
<td>entropy_Zall</td>
<td>타일내 고도의 엔트로피</td>
</tr>
<tr>
<td>entropy_Iall</td>
<td>타일내 반사값의 엔트로피</td>
</tr>
</tbody>
</table>
3.1.2 항공 영상 데이터의 분류를 위한 특정정보의 선정

본 논문에서 제안하는 기법에 따라 항공 영상을 타일 단위의 지형분류 기에 적용시키기 위해서는 우선 트레이닝을 위해 [그림 8]과 같이 이미지들 사각형으로 분할하고 사각형 내부의 이미지를 클래스 별로 추출할 필요성이 있다. 분할된 사각형을 이미지 타일(image tile)로 정의하면 각각의 이미지 타일 내부는 하나 혹은 두 개의 지형 유형으로 이루어져 있을 것이다. 이때, 이미지 타일 내부의 국부적 특성보다는 전역적 혹은 특정적인 특성을 고려하여 특징을 추출하는 것이 분류에 더 좋은 결과를 제공해 줄 것이다.

따라서 본 논문에서는 이미지 처리 분야에서 전역적 혹은 특정적인 부분을 고려하여 이미지 상호간의 유사도를 비교하는데 가장 널리 활용되고 있는 4가지 기법을 이용하여 총 75개의 특정정보들을 활용하였다.

![그림 8] 클래스별 지형유형의 추출

첫 번째로 소벨 필터와 워터 펄링 알고리즘(water filling algorithm)을
이용한 기법으로 소벨 필터(sobel filter)는 영상의 경계가 되는 지점을 찾아내는 필터로서 A는 원본 이미지이고 *는 컨볼루션(convolution) 연산자라고 할 때 아래와 같이 [식 6]~[식 8]과 같은 연산으로 이루어진다.

\[
G_y = \begin{bmatrix}
-1 & -2 & -1 \\
0 & 0 & 0 \\
1 & 2 & 1 \\
\end{bmatrix} \ast A \quad [\text{식 6}] \quad G_z = \begin{bmatrix}
-10 & +1 \\
-20 & +2 \\
-10 & +1 \\
\end{bmatrix} \ast A \quad [\text{식 7}]
\]

\[
G = \sqrt{G_y^2 + G_z^2} \quad [\text{식 8}]
\]

아래 [그림 9]는 실제 항공영상에 소벨 필터를 적용시켜 경계선을 추출한 예시이다.

[그림 9] 항공 영상의 소벨 필터 적용

[표 3] 워터 팔링 알고리즘을 이용한 특징

<table>
<thead>
<tr>
<th>특징</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>maxFillingTime</td>
<td>알고리즘의 전체 진행 시간</td>
</tr>
<tr>
<td>associatedForkCount</td>
<td>최대 진행 시간을 갖는 분기의 분기환수</td>
</tr>
<tr>
<td>maxForkCount</td>
<td>최대 분기 환수</td>
</tr>
<tr>
<td>associatedFillingTime</td>
<td>최대 분기 환수를 갖는 분기의 진행시간</td>
</tr>
<tr>
<td>FTH_bin0~6</td>
<td>진행 시간 히스토그램</td>
</tr>
<tr>
<td>FCH_bin0~6</td>
<td>분기 환수 히스토그램</td>
</tr>
</tbody>
</table>

두번째로 GLCM은 이미지를 흑백(gray scale)화하여 그 명도를 바탕으로 맵을 생성하여 패턴의 개수를 혜아리 작성한 행렬(matrix)이다. 2절에서 제시된 특징들을 바탕으로 지형지물에 따른 수치의 평균값을 [표 4]에서 확인해보았다.

[표 4] 지형에 따른 GLCM 특성 평균값

<table>
<thead>
<tr>
<th>지형</th>
<th>Contrast</th>
<th>Energy</th>
<th>Entropy</th>
<th>Correlation</th>
<th>Homogeneity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building</td>
<td>9.114811</td>
<td>0.030377</td>
<td>4.619688</td>
<td>0.057006</td>
<td>0.632047</td>
</tr>
<tr>
<td>Building plain</td>
<td>36.50615</td>
<td>0.005384</td>
<td>6.458565</td>
<td>0.001753</td>
<td>0.444612</td>
</tr>
<tr>
<td>Building road</td>
<td>55.08314</td>
<td>0.006079</td>
<td>6.510398</td>
<td>0.001506</td>
<td>0.46908</td>
</tr>
<tr>
<td>Forest</td>
<td>40.67232</td>
<td>0.001945</td>
<td>6.985789</td>
<td>0.004402</td>
<td>0.271826</td>
</tr>
<tr>
<td>Forest plain</td>
<td>23.65906</td>
<td>0.00182</td>
<td>6.918641</td>
<td>0.003375</td>
<td>0.335618</td>
</tr>
<tr>
<td>Forest road</td>
<td>49.69825</td>
<td>0.001642</td>
<td>7.17797</td>
<td>0.000842</td>
<td>0.356977</td>
</tr>
<tr>
<td>Plain</td>
<td>9.507847</td>
<td>0.010274</td>
<td>5.291933</td>
<td>0.040693</td>
<td>0.432759</td>
</tr>
<tr>
<td>Plain water</td>
<td>16.59682</td>
<td>0.00957</td>
<td>5.885747</td>
<td>0.005307</td>
<td>0.504244</td>
</tr>
<tr>
<td>Road</td>
<td>48.39661</td>
<td>0.00925</td>
<td>6.031209</td>
<td>0.003197</td>
<td>0.500504</td>
</tr>
<tr>
<td>Road plain</td>
<td>37.11229</td>
<td>0.003689</td>
<td>6.630934</td>
<td>0.001142</td>
<td>0.403537</td>
</tr>
<tr>
<td>Water</td>
<td>1.22681</td>
<td>0.079645</td>
<td>3.027371</td>
<td>0.41894</td>
<td>0.69008</td>
</tr>
</tbody>
</table>
위 [표 4]를 통해 전물영역과 물, 초원 등 단일한 영역에서는 균질성(Homogeneity)이 높고 대비성(Contrast)이 높게 나온 반면 복합영역에서는 그 반대의 방향으로 나오는 등 여러 가지 지형별 특징들을 확인해 볼 수 있다.

아래 [그림 9]는 수목과 초원이 혼합된 지형에서의 특정 영역을 찾아내고 지배색상을 추출한 결과이다. 몇몇 복잡한 이미지에서는 오차가 발생하지만 대체로 수목과 초원이 구분되어 적사각형의 영역으로 확보되어 있는 것을 확인할 수 있다.
본 연구에서는 항공영상의 한가지의 지형으로부터 이루어져 있는 순수 타일 5종류, 두가지의 지형으로 이루어져 있는 혼합타일 6종류로 총 11 개의 클래스를 이용하여 실험을 진행하였다. 이미지 데이터에 따라서 두 가지의 지형 자물이 한 이미지 안에 들어가기 때문에 두 가지의 주요 색상을 특정정보로서 활용하는 것이 타당하다. 따라서 본 연구에서 활용한 특정정보로서의 지배색상은 두 가지로 설정하여 실험을 진행하였다.

[그림 11] 에지 히스토그램 기법을 통해 나타난 지형별 특징

지형별로 특정의 형태가 상이하게 나타나는 모습을 통해 분별력을 가진 특징들이 추출되었다는 것을 유추해 볼 수 있다.
3.2 항공 라이다와 영상 데이터를 이용한 지형 분류

시스템의 구성

본 연구에서 논의된 항공 라이다와 이미지를 이용한 탄일 단위 지형분류 시스템의 구성은 [그림 12]와 같다.

![그림 12 항공 라이다 데이터와 항공 영상 데이터를 이용한 탄일 단위 지형 분류 시스템](image)

3.2.1 학습 과정

항공 라이다 데이터와 항공 이미지 데이터는 학습데이터의 생성을 위해 사용자에 의해 클래스가 정해진 탄일 형태의 원시 데이터(raw data)로 분할된다. 분할된 원시 데이터들은 각각 항공 라이다를 위한 특정 추출 도구와 항공 영상을 위한 특정 추출 도구를 통해 특정값들이 추출되
고, 추출된 특성값들은 특정 데이터베이스에 보관된다. 보관된 데이터들은 CSV 형태로 추출되어 데이터마이닝 도구 WEKA를 이용하여 분류 모델을 생성한다.

3.2.2 테스트 과정

테스트 데이터로서 확보된 항공 라이나 데이터와 이미지 데이터는 학습단계와 같은 과정을 거쳐 특징이 추출된다. 추출된 특성을 기 생성된 분류모델을 이용하여 분류를 시도하고 분류 결과를 도출한다.

항공 라이나 데이터와 항공영상을 이용한 분류모델의 성능을 평가하기 위해서는 항공 라이나 데이터를 이용한 분류모델의 정확도 평가와 항공 영상을 이용한 분류모델의 정확도 평가가 각각 이루어진 이후에 항공영상과 항공 라이나 데이터의 특정정보들을 취합하여 생성된 분류모델과의 차이점을 확인하여야 한다.

또한 항공 영상으로부터 얻어진 특정정보들이 모두 유용하다고 볼 수 없으며, 오히려 데이터 마이닝 기법을 적용할 때 차원의 저주 (curse of dimension)를 일으켜 정확도에 안 좋은 영향을 줄 수 있다. 따라서 각 이미지 특징 추출 기법별로 그 유 효성을 파악하고 소요 시간을 측정하여 유용성을 판단해야 한다.

본 논문의 3.3절 적합한 분류모델과 영상 특정정보의 선정 부분에서는 항공 이미지와 항공 라이나 데이터의 특정정보의 정확도를 상호 비교하고, 두 가지 종류의 특정 정보를 응용하였을 때 정확도가 개선되었음을 보였다. 또한 항공 이미지로부터 추출된 4가지 기법을 이용한 75가지 특
정정보의 유용성을 파악하기 위해 각 기법을 배제한 데이터를 이용하여 분류정확도를 측정해 보았으며 각 기법별 소요시간의 분석을 통해 이미지 특징정보를 선택하여 최적의 특징정보 개수를 제안하였다.

3.3 적합한 분류모델과 영상 특징정보의 선정

3.3.1 분류모델의 선정

분류 정확도를 테스트함에 있어 분류 방법이 정확도에 미치는 정도가 매우 크다고 할 수 있다. 특히, 분류 방법을 결정함에 있어서 타일 단위 분류에 있어서 가장 큰 장점을 가지는 분류 속도가 저해되지 않도록 분류 속도 역시 보장되는 알고리즘을 활용하여야 한다. 따라서 본 연구에서는 분류속도가 보장되며 일반적인 분류에서 정확도가 높은 것으로 알려진 대표적인 분류기법들인 베이지안 네트워크(BayesNet), 지지 벡터 기계(support vector machine:SVM), 분류 규칙 집합(PART), 그리고 결 정트리 C4.5 기법을 사용하여 각 방법의 분류 정확도를 비교 분석하여 최적의 분류 기법을 제안하였다.

본 절에서 활용한 데이터는 분류의 단위가 되는 타일의 크기는 본 연구의 실현연구[1]에서 적정한 타일 크기로서 제시한 바와 같이 10mX10m의 타일을 활용하였으며, 전라남도 정성지역으로부터 추출된 샘플 타일 1100여개가 분류대상이 되었다. 분류 기법의 정확성 테스트는 데이터마이닝 도구 WEKA에서 제공하는 10-군집 상호검증(10-folds cross validation) 기법을 이용하여 측정하였다.

아래 [그림 13]는 각 기법별 분류 정확도를 나타낸 그래프이다. 각 기
법별 분류 정확도를 살펴보면, 저지 벡터 기계가 가장 높은 정확도를 보이고 있고 다음으로 PART, 베이지안 네트워크, J48(C4.5) 순이지만, 전체적으로 거의 유사한 분류정확도를 갖는다는 것을 확인할 수 있다.

[그림 13] 기법별 분류 정확도

본 연구의 전향연구[1]에서는 지형의 유형을 숲, 초원, 도로, 건물, 물의 다섯 가지로 순서 타입으로 구분하고 향공 라이더로부터 추출된 32개의 특징들을 이용하여 98퍼센트라는 높은 정확률을 보인 바 있다. 하지만 타임은 정 기반 방법이나 페치 기반 방법과 같이 영상이나 각기의 점 데이터 단위로 결정되지 않기 때문에 한 타임 내부에 두 가지 이상의 지형 종류가 들어가는 경우가 발생하게 된다. 따라서 본 연구에서는 기본적인 지형유형인 다섯가지 순수타입 이외에 두가지 지형이 복합된 여섯가지 복합타입을 추가로 클래스로 지정하여 총 11가지 클래스를 정의하고 본
류 모델의 생성에 활용하였다.

이렇게 복합타일을 고려하는 경우 이후 경계선 추출의 대상이 될 수 있는 복합타일의 분류 정확도가 순수타일의 분류 정확도보다 우선순위를 갖는 요소가 될 수 있다. 따라서 보다 유용한 분류 모델의 선정을 위해 각 기법별 순수타일과 복합타일의 분류정확도를 각각 살펴보기 위해 아래 [그림 14]와 같은 그래프를 작성하였다.

[그림 14] 타일의 종류별 분류 정확도 분석

위 [그림 14]에서 확인할 수 있는 바와 같이 복합타일의 분류 정확도는 베이지안 네트워크가 가장 높고, 저지 벡터 기계, PART, J48 순이라는 것을 확인할 수 있다. 본 연구에서는 가장 높은 복합타일 분류 정확도를 보이며 모델 생성에 소요되는 시간이 가장 짧은 베이지안 네트워크를 이후 실험에 활용하였다.
3.3.2 영상 특정정보의 선정

본 연구에서는 총 4가지 기법의 75가지 영상 관련 특정정보를 분류모델의 생성 단계에서 추가하여 활용하였다. 하지만 4가지 기법의 모든 특정정보가 모두 분류정확도에 좋은 영향을 미치는 유용한 특정정보라고 할 수 없으며, 각 특정정보들이 추출되는 시간도 고려될 필요가 있다.

본 절에서는 각 이미지 처리 기법이 타일의 분류에 긍정적인 영향을 주는지를 분석하기 위해 각각의 기법을 통해 특정을 추출하는데 소요되는 시간과 기법별 분류 정확도에 기여하는 정도를 확인하였다.

[표 5] 이미지 처리 기법별 소요시간

<table>
<thead>
<tr>
<th>구분</th>
<th>GLCM 특징</th>
<th>Dominant Color 특징</th>
<th>MPEG 특징</th>
<th>Water filling 특징</th>
</tr>
</thead>
<tbody>
<tr>
<td>소요시간(ms)</td>
<td>298.8</td>
<td>90</td>
<td>3.2</td>
<td>791.6</td>
</tr>
</tbody>
</table>
각 이미지 특정들은 추출하는데 소요되는 시간을 살펴보면 위에서 정리 알고리즘을 활용한 특정들을 추출해내는데 가장 많은 시간이 소요되는 것을 확인할 수 있다. 반면 위터 필링 알고리즘의 분류 정확도 향상에 기여하는 정도가 매우 미미하기 때문에 배이지언 네트워크를 활용할 경우 위터 필링 알고리즘을 제외하고 분류모델을 생성하는 방법을 제안한다. 또한 MPEG 특징을 제거하였을 경우 정확도의 향상은 MPEG 특징 이 히스토그램 형식으로 50개의 특정정보를 생성하여 지나치게 많은 특정정보를 활용하게 되는데 이 지나치게 많은 특정정보들이 차원의 저주 (curse of dimension)을 일으키기 때문인 것으로 판단된다. 하지만 영상의 해석정보를 인식할 수 있는 MPEG 특징과 위터 필링 특정들을 모두 제거하면 예측 분류 정확도에 손실이 크게 발생하는 것을 볼 수 있으며, 두 특징들이 서로 비슷한 특성을 갖는 관계라는 것을 알 수 있다. 따라서 본 논문에서는 특정 추출에 소요되는 시간이 보다 짧으며 위터 필링 알고리즘으로부터 얻어질 수 있는 정보를 대체할 수 있는 MPEG 특장을 활용하여 실험을 진행하였다.
4. 실험 및 평가

본 절에서는 3절에서 가정하고 실험을 통해 분석한 데이터가 지형분류 에 적합한 모델을 생성할 수 있는지 분석하기 위하여 항공 라이다 데이터를 이용했을 경우의 분류 예측 정확률과 항공 영상의 특정정보만을 이용한 분류예측 정확률, 그리고 두가지 데이터를 융합하여 분류 모델을 생성한 결과를 비교하여 융합된 데이터의 예측 정확률이 뛰어났음을 보였 다. 또한 실제 적용에 있어서 시각적인 분석을 위하여 비교적 여러 종류의 구조물들이 들어간 복잡한 지형을 분류 대상으로 선정하여 실제 지형을 분류하여 시각적으로 표시하고 정확도를 분석하였다.

4.1 실험에 사용된 데이터

3절에서 기술한 바와 같이 본 연구의 실해연구[1]에서는 지형의 유형을 숲, 초원, 도로, 건물, 물의 다섯 가지로 순수 타일로 구분하고 항공 라이다로부터 추출된 32개의 특성을 이용하여 97퍼센트라는 높은 정확들을 보인 바 있다. 하지만 타일은 접, 기반 방법이나 해치 기반 방법과 같이 영상이나 라이다 데이터에 의존하여 결정되지 않기 때문에 한 타일 내부에 두가지 이상의 지형종류가 들어가는 경우가 발생하게 된다. 따라서 본 연구에서는 기본적인 지형유형인 숲, 초원, 도로, 건물, 물의 다섯 가지 순수타일 이외에 건물+초원, 건물+도로, 숲+초원, 숲+도로, 초원+물, 도로+초원의 여섯가지 복합타일을 추가로 클래스로 지정하여 총 11 가지 클래스를 정의하고 분류 모델의 생성에 활용하였다.

또한, 본 실험에서 활용한 학습 데이터는 전라남도 장성 지역의 약
11000여개 지형 타일을 추출하여 활용하였으며 분류의 단위가 되는 타일의 크기는 본 연구의 선행연구[1]에서 최적의 타일크기로서 제시한 바와 같이 10m×10m 크기의 타일을 활용하여 분류모델을 생성하였다.

4.2 특정 융합의 유효성 판단

본 실험에서는 지형유형을 다양하게 정의함에 따른 항공 라이다 데이터의 정확성의 변화를 확인하기 위해 전라남도 장성 지역의 항공 라이다 데이터를 10m×10m 크기로 분할하고 11000여개의 샘플 타일을 확보하여 분류모델을 생성하여 아래 [그림 16]과 같은 분석 그래프를 얻었다.

분류 기법의 정확성 예측은 데이터마이닝 도구 WEKA에서 제공하는 10-군집 상호검증(10-folds cross validation) 기법을 이용하여 측정하였 다.

![그림 16] 각 특정 적용 시 타일별 분류 정확도
전라남도 장성지역을 대상으로 항공 라이더 데이터만을 활용하여 얻은 예측 정확도가 최대 83.36퍼센트로 얻어진 것을 확인할 수 있었다. 이는 본 연구의 사례연구에서 진행한 실험인 97%에 훨씬 뒷받침 수치로 타일의 클래스를 복합타일을 포함하여 보다 세부적으로 분할한 것이 분류 정확도의 지하에 영향을 준 것으로 판단된다.

항공 영상을 통해 얻어진 특징정보는 위터 필링 알고리즘을 제외하고 총 58개로 항공 라이더를 통해 얻어진 특징정보인 32개보다 두 배 정도 많음에도 불구하고 82.25퍼센트 정도의 더 낮은 정확률을 보였다. 이는 항공사진을 촬영함에 있어 사진을 활용하는 각도, 그림자 등에 의해 발생하는 노이즈에 의한 영향이 크고, 라이더에서 추출할 수 있는 3차원 정보를 항공영상으로 통합적할 수 없기 때문인 것으로 분석된다.

위 [그림 16]에서 완전히 수 있는 것처럼 항공 영상과 라이더 각각의 특징정보를 따로 활용하였을 경우보다 두 가지 데이터를 융합했을 경우가 순수타일과 복합타일을 아우르는 모든 측면에서 더 높은 분류 정확도를 갖는다는 것을 확인할 수 있었다. 이는 라이더 데이터와 항공영상 데이터가 서로 부족한 부분의 데이터를 가지고 있어 상호보완적인 분류모델이 생성되었기 때문인 것으로 판단된다.

4.3 지형 분류 실험

본 실험에서는 실제 장성지역의 일부 데이터를 WEKA를 이용하여 생성된 지형 분류기를 이용하여 분류한 후 실제 결과를 확인하였다.
활용된 데이터는 장성지역의 데이터 중 수역을 제외한 모든 지역이 골고루 분포하여 있는 200mX200m 지역을 임의로 선정하였으며, 평가방법은 선정된 지역을 수작업으로 분류한 결과와 분류기를 통해 나온 분류결과를 비교하여 정확도를 측정하는 방법으로 진행되었다.

아래 [그림 18]~[그림 21]은 선정된 지역의 실제 이미지와 이를 항공영상 특징들만을 이용하여 분류한 결과, 항공 라이다 특징들만을 이용하여 분류한 결과, 두 가지 특징을 융합하여 분류한 결과를 비교한 사전이다.
위 [그림 17]~[그림 20]을 통해 항공영상과 항공 라이다 특징들을 융합하여 활용하였을 경우 보다 정확한 분류결과를 보인다는 것을 육안으로 확인할 수 있다.

![그래프](image)

[그림 21] 활용된 특정별 정확도 분석

분류 정확도가 10-군집 상호 격증을 하였을 경우보다 매우 낮게 나온 경향을 보이고 있는데, 이는 다양한 데이터가 포함되어 있는 복잡한 지역을 실험 대상으로 하여 그 정확도가 크게 떨어진 것으로 분석되며, 이러한 복잡한 지역에 대해서도 항공 이미지와 항공 라이다의 두 가지 특징을 모두 이용한 경우 한 가지 특징정보만을 격증에 활용한 경우보다 더 우수한 결과를 내고 있음을 확인할 수 있다.
5. 결론 및 향후연구

최근 산림의 변화, 자연재해, 해안선의 변화 및 도심지 구조의 변화 등
을 모니터링하기 하여 국도의 변화정보를 관측하기 위한 시도가 활발하
게 진행되고 있다. 특히 항공기를 통해 승득할 수 있는 항공 영상과 항
공 라이다 데이터는 그 비용이 저렴하고 많은 데이터를 얻어낼 수 있어
지표면을 연구하기 위한 소재로서 활용 분야가 다양하다.

특히, 항공 라이다 데이터를 이용하여 지표면을 분류하고 구조물들을
파악하기 위한 연구가 활발하게 진행되고 있는데 이를 위한 방법등으로서
점 기반 지형 분류 기법, 패치 기반 지형 분류 기법, 타일 기반 지형 분
류 기법으로 나누어 설명할 수 있다. 이중 타일 기반 지형 분류 기법은
다른 두 방법에 비해 지표면의 분류 속도가 빠르다는 장점을 가지고 있
지만, 타일의 분류를 위한 클레스가 늘어남에 따라 정확도가 저하되는
단점을 가지고 있다.

본 연구에서는 선형연구에서 진행한 항공 라이다 데이터만을 이용한
경우의 정확도를 보정하기 위한 목적으로 항공영상은 여러 가지 이미지
처리 기법들을 활용하여 특성을 추출하고 이를 이용하여 분류 정확도를
증진시키는 방법을 연구하였다. 이를 위해 항공 영상으로부터 경계선, 방
향성, 특징적 색상, 패턴 등을 고려한 4가지 이미지 처리 기법을 활용하
여 총 75가지의 특징들을 선정하였고 소요시간과 분류 정확도에 주는 영
향을 판단하여 최종적으로 3가지 기법의 58가지 특징정보를 활용하였다.
본 연구의 결과를 통해 타일 단위 지형분류 기법에 있어서 항공영상을
이용하여 그 정확도를 향상시킬 수 있음을 보였다.
항후연구로는 항공영상 및 라이다 데이터로부터 분별력이 높은 추가적 특징들을 찾아내어 분류 정확도를 더 향상시키고, 두가지 이상의 지형이 섞인 복합지역에서 경계선을 추출함에 있어 항공 영상과 항공 라이다의 경계선을 융합하여 보다 신뢰도 높은 경계선을 추출해내는 기법을 연구할 예정이다.
6. 참고문헌

[7] Xiang Sean Zhou, Thomas S.Huang, ”Edge-based structural features for content-based image retrieval”, Pattern recognition

감사의 글

길다라면 길고 짧다면 짧었던 지난 4년간의 연구실 생활을 마치고 인생의 전환점에 서서 뒤를 돌아보니 저를 도와주셨던 많은 분들에 대한 미안하고 고마운 마음만 가득합니다. 저를 도와주셨던 많은 분들에게 일일이 찾아 쌓고 감사인사를 올리지 못하는 점 양서를 구합니다.

먼저 부족한 저를 흔쾌히 연구실에 받아주시고 지난 4년간 열과 성으로 지도해주신 지도교수 김유성 교수님의 은혜에 고개 숙여 감사드립니다. 그리고 바쁘신 가운데도 부족한 저 논문을 심사해주신 김기장, 조우석 두 분 교수님의 은혜에 감사드립니다.

항상 앞장서서 연구실 일을 총정주신 주선히 형, 지금은 출업했지만 마음 든든한 조연을 아끼지 못하시는 효전이 형 두 분 선배님께 감사한 말씀을 올리고 싶습니다.

또한 연구실 후배들에게도 많은 도움을 받은 것 같습니다. 오랜 시간 함께해주면서 미국식 개그로 연구실 분위기를 화기애애하게 만들려고 노력했던 지휘관이, 항상 열심이었던 광호, 부족한 저를 대신해 여러 가지 일을 도맡아 처리해주었던 철중야, 요세 논문진행 때문에 정신없이 바쁜 사람 중의 한 명, 유쾌한 인해 뒤문가 변영희장 호준이, 대학원 입학이 라는 난관을 순조롭게 넘긴 남수, 제 짧은 영어 때문에 많은 대화를 나누지 못해서 아쉬웠던 진희, 그리고 마지막으로 의견차이 때문에 많이 다투기도 했지만 많은 의견을 제시하고 논문 진행에 많은 도움을 준 연찬이 모두에게 감사인사를 드리고 싶습니다.

그리고 먼 거리에서 항상 저를 응원하고 격려해주신 여진친구 민정이와 항상 사랑과 관심으로 저 인생의 든든한 후원자가 되어주신 부모님께도 감사한 인사를 전하고 싶습니다.