저작자표시-동일조건변경허락 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.
- 이차적 저작물을 작성할 수 있습니다.
- 이 저작물을 영리 목적으로 이용할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

동일조건변경허락. 귀하가 이 저작물을 개작, 변형 또는 가공했을 경우에는, 이 저작물과 동일한 이용허락조건하에서만 배포할 수 있습니다.

- 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건을 명확하게 나타내어야 합니다.
- 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer ☛
Effects of Silymarin

on cytokine mixture-induced inflammation

in chondrocytes

2009년 2월

인하대학교 대학원

의학과 (정형외과학 전공)

이 동 주
연골세포에 있어서 cytokine mixture로 유발된 염증반응에 대한 Silymarin의 영향

Effects of Silymarin
on cytokine mixture-induced inflammation
in chondrocytes

2009년 2월
지도교수 문경호

이 논문을 박사학위 논문으로 제출함

인하대학교 대학원

의학과 (정형외과학 전공)

이동주
이 논문을 이 동 주의 의학박사 학위논문으로 인정함

2009년 2월

주심

부심

위원

위원

위원
목차

국문 요약
Abstract
List of Figures
I. 서 론
II. 실험재료 및 방법
1. 세포배양
2. 염증반응의 유도
3. zymographic analysis를 통한 MMP 활성도 측정
4. Western blot analysis
5. 세포생존율 측정 (MTT assay)
III. 실험결과
1. Zymography 분석을 통한 스크리닝
2. 세포생존율에 대한 영향
3. 염증성 단백질인 iNOS와 COX-2의 발현에 대한 영향
4. 사람 연골세포에서 MMP-9의 발현에 미치는 영향
5. ER stress에 대한 영향
6. Silymarin에 의한 caveolin-1 발현과 Erk 활성 억제
IV. 고 쌍
V. 결 론
VI. 참고문헌
국문요약

목적: 관절염은 연령과 연관된 연골 및 관절의 질환으로 천천히 진행하고, 관절연골 세포의 기질의 파괴와 관절연골 세포의 세포사멸을 특징으로 한다. 관절염의 발병 관여 병리 기전을 규명하고, 그 과정에서 관여되는 여러 단백분자를 분석함으로서 관절염에 기여하는 물질의 발현 양식을 확인하고 선택하여 이러한 물질의 작용 기전을 이해하고 임상적 유용성을 확인할 수 있을 것이다.

대상 및 방법: 사람 및 토끼의 연골세포를 채취, 배양하여 lipopolysaccharide와 cytokine 혼합물(CM)으로 처리하여 염증을 유도한 후, 다양한 flavonoid와 항염증물질이 MMPs 활성도, 세포생존율, iNOS 및 COX-2의 발현, endoplasmic reticulum (ER) stress 반응, caveolin-1의 발현 및 Erk 활성도에 대한 영향을 측정하였다. 이를 위해 MMPs 활성도는 zymographic analysis, 세포생존율은 MTT assay, 단백질발현은 Western blot 방법을 이용하였다.

결과: 여러 flavonoid 중 MMP (세포외 기질 분해 단백질)의 억제효과를 측정하면, Rhoifolin은 효과가 없고, apigenin과 Kf (Kaemferol)는 일부 억제하고, butein은 강력히 억제하며, silymarin도 강한 억제를 나타냈다. iNOS (inducible nitric oxide synthase) 억제자인 aminoguanidine의 경우는 MMP의 확성억제 작용이 없었다. MMP의 억제작용이 있는 flavonoid로 세포독성을 확인해보니 silymarin은 CM (cytokine mixture)에 의한 세포사를 오히려 약간 억제하는 것으로, butein은 연골세포 파괴 억제작용도에서 오히려 세포사멸이 더 크게 나타나 세포독성이 예상되었다. CM (cytokine mixture) 에 의해 증가된 iNOS와 COX2가 silymarin에 의해 높도 의존적으로 억제되었다. Butein은 iNOS는 억제하지만, COX2는 오히려 증가시켜 염증반응을 촉진시킬 것으로 판단되었
다. ER (endoplasmic reticulum) stress response를 유발하고 그 억제정도를 관여 인자인 GRP78과 eIF-2α를 측정하여 silymarin이 이 분자의 인산화를 억제하는 것을 확인하였다. 세포 사멸에 관여하는 caveolin 1의 발현에 silymarin 이 영향을 주는 정도를 측정결과, 연골세포에서 caveolin 1 발현이 극적으로 감소하였다. 또한 세포사멸에 관여하는 기전인 MAPK (mitogen activated protein kinase)의 일종인 Erk (Extracellular signal-regulated kinase)의 활성도 silymarin에 의해 억제되었다.

결론 : 관절염의 발생에 있어서 연골세포의 기질의 파괴관점과 연골 세포의 세포사멸과 노화의 관점에서, 여러 flavonoid 중 silymarin은 세포의 기질을 분해하는 MMP 활성억제에 효과적으로 기능하였고, 세포사멸에 관여하는 ER stress response를 억제하고, caveolin 1의 표현 그리고 Erk의 활성을 억제하여 연골세포의 파괴를 억제하였다. 그 외 작용기전으로 염증의 발현에 관여하는 효소(COX 2)를 억제하여 염증반응을 줄이는 것을 확인하였다. 작용 농도에서 세포독성을 관찰되지 않아 그 임상적 유용성이 기대된다고 하겠다.

핵심단어 : matrix metalloproteinase, caveolin, apoptosis, endoplasmic reticulum, silymarin
Abstract

Objective : Osteoarthritis (OA) is the most common age-related cartilage and joint pathology. OA is a slowly progressive degenerative disease characterized by the degradation of the extracellular matrix (ECM) and cartilage cell death. The aim of this study was to analysis the protein molecules related to pathogenesis of osteoarthiritis and to understand the action mechanism of protein molecules, so we could understand that many substances (flavonoids) is how to act to the arthritis related protein molecules and evaluate the clinical usefullness of this sustances.

Materials and Methods : Chondrocytes were harvested from extradigit of polydactyly patients and knee joint of rabbit and cultured. Chondrocyte inflammation was induced by cytokine mixture. We evaluate that various flavonoids (anti-inflammatoy agent) was how to act to MMPs expression, cell viability (MMT assay), expression of iNOS and cyclooxygenase 2, endoplasmic reticulum (ER) stress response and the expression of caveolin-1 (Cav-1) and the phosphorylation of Erk MAPK. MMPs expression is evaluated by zymographic analysis, cell viablility is by MMT assay and protein expression is by Western immunoblotting.

Results : Zymographic analysis for the screening of anti-inflammatory effects of various flavonoids showed that apigenin, butein, silymarin and kaempferol were effective to inhibit the elevation of MMP-9 or MMP-2 activity by CM treatment. Cell viability of rabbit chondrocytes was improved with silymarin and high concentraion of butein. Butein and silymarin suppressed the increased expression of
iNOS by CM in a dose-dependent manner. Silymarin but not butein inhibited the increased expression of COX-2 in a dose-dependent manner by CM. C, PBS control, D, DMSO control CM (cytokine mixture). Inhibitory effects of silymarin on the expression of ER stress responsive protein in human chondrocytes. The increased phosphorylation of eIF2α was dramatically decreased by silymarin. Inhibitory effect of silymarin on the expression of caveolin-1 (Cav-1) and the phosphorylation of Erk MAPK in human chondrocytes. CM has no effect on the expression level of caveolin-1, whereas CM slightly increased the phosphorylated Erk. Silymarin significantly decreased the expression of cav-1 below the basal level. Phosphorylation (activation) of Erk was also significantly inhibited by silymarin.

Conclusion: In the pathogenesis of osteoarthritis, various flavonoids influence on the extracellular matrix destruction and cartilage cell death. Silymarin effectively decrease MMPs expression, ER stress response which is related cellular senescence, cav-1 expression and ErK activation and cox-2 expression. All together those kinds of actions lead to decrease the progression of osteoarthritis. Silymarin had no harmful effect to the cell viability in effective concentration so it's clinical usage is anticipated.

Key words: matrix metalloproteinase, caveolin, apoptosis, endoplasmic reticulum, silymarin
List of Figures

1. Zymographic analysis for the screening of anti-inflammatory effects of various flavonoids. ... 17
2. Cell viability measurement. ... 19
3. Effect of silymarin on cell viability in the presence or absence of CM. 20
4. Effects of butein, silymarin, kaempferol (Kf), iNOS inhibitor (aminoguanidine), and metformin on the protein expression of iNOS and cyclooxygenase 2 (COX-2) in rabbit chondrocytes ... 22
5. The effects of silymarin on the expression of MMP-9. 23
6. Inhibitory effects of silymarin on the expression of ER stress responsive protein in human chondrocytes ... 25
7. Inhibitory effect of silymarin on the expression of caveolin-1 (Cav-1) and the phosphorylation of Erk MAPK ... 27
I. 서 론

관절염은 연령과 연관된 연골 및 관절의 질환이다. 관절의 질환으로서 천천히 진행하며 관절연골 세포의 기질의 파괴와 관절연골 세포의 세포사멸을 특징으로 하며, 점진적인 관절 연골의 손상으로 표현된다. 1, 2) 연골세포는 성숙된 연골에서 관찰되는 유일한 세포이고, 이 세포가 관절염으로 발생된 관절 연골 손상의 치유를 담당한다. 연골세포는 콜라겐과 단백당 (proteoglycans)을 생성, 분비하여 연골의 기질을 유지하고, 또한 연골세포에 영향을 주는 효소들을 생성하여 관절기질의 분해 및 유지에 관여한다. 3) 이러한 관절 구성 요소의 파괴를 나타내는 병적 환경이 골 관절염과 류마티스 관절염이 대표적이라고 한다. 이러한 질환의 발병요인은 명확히 규명되고 있으며, 그 발현양식이 다양하여 여러 질병 군으로 표현되고 있다. 다양한 발현을 보이나 양 질환 모두 그 발현단계에 일관된 염증매개체 (inflammatory mediators) 가 생성되어 작용한다. 관절염 상태인 관절의 활성화된 활액막 세포 (synovial cell) 와 침투된 대식세포 (macrophage)에서 생성된 cytokine IL-1은 관절염에서 가장 강력한 이화요소 (catabolic factors) 중 하나이며, 이것은 작용으로 연골파괴의 여러 매개체(단백질)의 생성을 촉진한다. 4)

다시 말하면, 성숙된 연골에서 추출된 연골세포는 적어도 2가지의 분명한 질적 기능 작용을 나타낸다. 이화작용 (catabolic program) 은 위에서 설명한 것처럼 활액막 세포나 대식세포에 의해 분비되는 cytokine에 의한 전구염증 자극 (proinflammatory stimuli)에 의하여 유도되며, proteases의 분비, 기질합성의 억제, 연골세포 apoptosis의 발현 등이 나타난다. 동화작용 (anabolic program) 은 이화작용의 반대의 작용으로 이화작용에 길항적인 cytokines을 생성하고, protease 방해인자의 합성, 세포의 기질의 합성과 세포 복제 등이 나타난다. 5)
그리므로 양 관절염에서는 비정상적인 이화작용이 유발되는 것이고, 그러한 작용 단계에서 여러 병리 기전과 그 기전에 작용하는 여러 단백질의 활성이 이루어진다. 즉 이러한 연골 단백질이 발현되도록 이화작용을 유발하여 세포 활성을 유도하고 생성된 연골 단백질의 활성을 분석하여 그 연관관계를 규명함으로서 그 작용기전을 이해하는데 도움을 줄 수 있다. 이러한 연구를 통하여 파거와 다르게 관절염의 진행과 특정 약물의 효과를 확인하는데 응용한다면 그 효능과 작용기전을 쉽게 이해할 수 있게 된다.

이화작용에 작용하는 여러 요소 중 연골 파괴의 매개체인 NO와 matrix metalloproteinases (MMPs)는 다양한 신호체계의 활성화에 의하여 형성된다. 6, 7). MMP 등의 효소군들은 세포외 기질성분을 광범위하게 분해하는 능력을 통하여 관절염의 관절의 조직 재생뿐만 아니라 연골과 골의 파괴에 결정적인 역할을 한다. MMP의 생성은 proinflammatory cytokine IL-1을 포함한 여러 요소에 의하여 유도된다. 여러 MMP 중 MMP-9, MMP-2, MMP-13은 관절질환 에서 특히 증가하는 효소이고, 연골 대부분을 구성하고 있는 제 2형 collagen 에 특히 효과적으로 작용하여 파괴함으로 특별 중요하다 할 수 있다. 여러 연구에서 관절염의 관절에서 MMP 효소들로 인하여 과도한 제 2형 collagen의 파괴가 확인되며, 과도한 MMP-13의 활성을 관절염의 관절에서 확인할 수 있었다. 인간 연골 세포나 관절염의 동물모델에서 전구염증 cytokine의 자극으로 생성된 MMP-13은 MAPK subgroup JNK의 활성과 전사요소 (transcription factor) AP-1에 의존하여 형성된다. 11, 12). 관절염 동물모델에서 JNK의 방해인자들이 관절염을 호전시키는 것으로 판단한 바, 관절염의 병리기전에 있어서 JNK의 역할은 중요하다 11).

위와 같이 관절연골 세포의 기질의 분해가 관절염 병리의 중요인자이며, 이러한 것의 중요한 단백분자가 MMP였다. 이것 이외에 관절염의 진행에 있어서
주목되는 것이 연골세포 자체의 변화이다.

퇴행성 관절염의 악화는 인간이 50대에 들어서면 3배에서 4배의 증가를 나타낸다. 또한 여러 보고에서 노화와 관절염의 여러 상관관계가 밝혀지고 있다.

위와 같은 사실로 연골세포의 노화(senescence)와 관절염의 진행과 밀접한 연관관계가 있을 것으로 판단된다. 세포사멸은 2가지의 형태로 대별되는데 첫째는 내재적인 노화(telomere-dependent replicative senescence)이고, 둘째는 외재적인 노화(telomere-independent senescence)이다. 외재적인 노화는 oxidative stresses, ultraviolet (UV) irradiation, secretory factors (예, proinflammatory cytokines)\(^{13, 14}\) 등에 의하여 유발된다. 관절연골의 파괴도 이러한 기계적 또는 화학적 자극에 의하여 유발된다. 특히 기계적인 압박, cytokines 그리고 oxidative stress등의 여러 catabolic stress들은 관절염의 유발병리로 확인된다.

세포의 지정된 세포사멸의 관여하는 기전 중 ER stress response에 의하여 영향을 받는 것으로 알려져 있다. endoplasmic reticulum stress response는 ER stressor로부터 ER (endoplasmic reticulum)을 보호하는 세포 기전이다. endoplasmic reticulum내 unfolded protein의 축적은 UPR(unfolded protein response)이라는 ER stress response을 유발한다. 포유동물의 ER stress response는 3가지 형태의 transmembrane proteins이 중요한 기능을 보인다. protein-kinase와 site-specific endoribonuclease (IRE1), protein kinase R-like ER kinase/pancreatic eIF2 kinase (PERK/PEK), 그리고 activating transcription factor 6 (ATF 6) 등이다\(^{15, 16, 17}\). 포유동물의 ER stress response는 adaptation(적응)과 apoptosis(세포사멸)의 2 단계 반응으로 구별된다. 세포는 초기에 단 조절 단백질이며, ER-resident stress protein (molecular chaperons)이 축적되는 unfolded protein (ER GRP78과 GRP94)을 refold함으로서 항상성을 유지하도록 적응하고 있다\(^{18, 19, 20}\). 그러나 이러한 단계의 한계를 넘는 경우 즉 과도한 unfolded protein의 축적은 ATF6-
와 ATF4-에 의존적인 C/EBP homologous transcription factor (CHOP)의 활성에 의하여 apoptosis 단계로 발전한다[21]. 연골 세포의 사멸에 관여하는 ER stress response의 정도를 그 관여 단백질인 GRP78과 전사요소 단백분자인 P-eIF2α의 활동을 확인하여 측정할 수 있다.

caveolae는 plasma membrane의 vesicular invagination들이다. caveolin 1은 생체 내 caveolae의 주요한 구조적 구성요소이다. caveolin 2는 caveolin 1과 같은 생체 내 분포를 보이고[22], caveolin 3는 형질근 세포(심장과 골격근)들에서만 관찰된다. caveolae와 caveolin은 최종 분화된 성숙세포인 지방세포, 내피세포, 근육 세포 등에서 발견되며, stress에 유도된 세포 사멸의 경우는 내재적인 caveolin 1이 증가한다[23, 24]. 이러한 소견으로 caveolin 1과 stress로 유도되는 조기 사멸과 밀접한 관련이 있으며, caveolin 1이 세포사멸에 중요한 기능을 담당할 것으로 추론된다. 최근의 면역조직 분석에 따르면, 콜라겐 1이 정상 관절연골에 발현되는 것으로 확인되나, 그 존재이유는 명확하지 않다. 현재까지의 연구를 통하여 IL-1β, oxygen free radicals등과 같은 stress에 의하여 유도되는 세포사멸에 caveolin 1이 중재 기능을 하는 것으로 판단된다.

추가적으로 telomere 의존적 또는 비의존적 세포 사멸이건 실행분자로 p38MARK가 작용하고[26], 이러한 p38MARK는 ERK/MAPK 작용기전과 연관되어 발생함으로 세포 사멸에 이러한 작용기전이 중요하다고 하겠다. 그러므로 Erk (extracelluar signal regulated kinase)의 활성 정도를 측정하는 것은 세포사멸 활성을 측정하는 것으로 해석된다.

위와 같이 관절염의 병리 기전에 관여하는 세포외 기질의 형성 및 유지에 관여하는 단백분자와 연골세포의 세포사멸기전에 관여하는 여러 단백분자 및 기전에 대하여 이해하였고, 그러한 이해를 바탕으로 이러한 단백분자의 활성 을 억제 또는 증진시키는 항산화제들이 관절염을 예방 및 치유할 수 있을 것
우로 판단되어진다. 그 중 다양한 flavonoid에 주목하게 된다. flavonoid는 식용 식물에서 추출된 polyphenolic화합물로, 약 4000종 이상이 있으며, flavonol, flavones, catechins, flavanones, anthocyanidins, 그리고 isoflavonoids 등으로 대별된다. flavanoid는 in vivo 뿐만 아니라 in vitro 실험에서 수많은 세포에 생물학적 영향을 미친다. 항생기능, 항바이러스 기능, 세포 저항기능, 세포 파괴기능, 항암기능, mutagenic, 항염증기능, 항산화기능, antihepatotoxic, 항 고혈압기능, 저지혈기능, antiplatelet\(^{27}\) 등의 효과를 나타낸다.

항염증 기능에 있어서 flavonoids는 여러 동물실험에서 유의한 효과가 입증되고 있다. catechol 또는 guaiacol-like B ring을 포함하고 있는 화합물은 항 염증반응을 보이는 것으로 판단된다\(^{28}\). quercetin과 같은 flavonoid를 고농도로 반응시킬 때 cyclooxygenase pathway와 lipooxygenase pathway를 억제하고, 저농도로 반응시킬 때는 lipooxygenase pathway를 우선적으로 억제한다\(^{29}\). flavonoid는 류마티스 관절염에서 MMP의 활성에 영향을 주고, prostaglandins에 의하여 촉진되는 새로운 혈관생성에 영향을 준다.

flavonoid중 silymarin은 silybum marianum (milk thistle)으로부터 95%의 ethanol을 이용하여 추출되며, 식용이 가능하고 고래로 간질환에 효과가 있다고 알려져, 약초로 널리 사용되어졌으나, 그 부작용은 거의 보고되지 않았다. 인도, 중국 남아메리카 그리고 오스트리아 지역에서 채취되며 70여종의 다른 상품으로 생약의 형태로 생산 판매되고 있다. silymarin은 70-80%의 silymarin flavonolignans 과 20-30%의 화학적으로 정립되지 않는 polymeric 과 산화된 polyphenolic 화합물로 성분으로 구성되어 있다. silymarin flavonolignan은 대부분 50-60%의 silybin, 20%의 silychristin, 10%의 silyldianin, 5%의 isosilybin, 그리고 그 외 dehydrosilybin과 taxifolin으로 이루어져 있다. 이러한 구성성분중 주성분인 silybin이 주된 약효를 나타내는 것으로 추정되나 정확히 그 기능이 밝히지는 않았다.
혀지지는 않았다. silymarin의 독성은 거의 없는 것으로 일부 소화기계의 합병증으로 소화불량, 구토, 설사 등이 보고되고 있다. De la Puerta 등37)은 여러 급성염증의 동물모델에서 silymarin의 효과를 시험하였는 바, carrageenan으로 유발된 족부 부종실험에서 silymarin을 국소 도포 (44.52%) 한 경우가 indomethacin 복강 내 투여 (36.96%) 경우보다 더 우수한 항 염증작용을 보인다고 하였다. 이러한 반응은 leukocyte migration을 억제하여 그 수를 줄임으로서 효과를 나타낸다. Gupta 등42)는 silymarin은 5-lipoxygenase의 억제를 통하여 염증반응을 줄이는 것으로 보고하였다. 결론적으로 우수한 간세포 보호 작용과 그 외 면역증진작용, 항산화작용 그리고 항염 작용 등이 보고되고 있고, 낮은 생산 원가와 안정성 등으로 가까운 장래에 보다 많은 이용이 있을 것으로 판단된다.

본 연구에서 골관절염의 연골세포의 파괴 과정에도 이러한 flavonoid가 효과적으로 염증반응을 줄일 수 있을 것이라 판단하고, 이중 silymarin에 주목하여 관절염의 유발에 관련된 요소들에 어떠한 영향을 미치는가를 평가하고자, 골관절염의 연골파괴에 중요 단백질인 MMP, 염증반응에 관여하는 효소인 cyclooxygenase-2, iNOS의 발현, ER stress, caveolin 1 발현과 Erk 활성에 미치는 영향을 측정하여 그 상호관계를 파악하고자 한다.
II. 실험재료 및 방법

I. 세포배양

본 연구에서는 토끼 관절연골세포를 이용하고 사람의 관절연골세포는 다지증환자의 제거된 손가락 검체로부터 채취하였다. 토끼 연골세포 채취를 위해, 2주령 뉴질랜드 화이트 (New Zealand White) 수컷 토끼를 ketamine과 xylazine으로 마취시킨 후 무릎주변의 털을 제거하고 70% 알코올로 피부를 소독하였다. 멸균된 수술용 도구로 표피를 제거하고 무릎의 십자인대와 주변 인대를 철저히 대퇴골과 경골을 분리한 후, 양쪽 무릎 관절에서 연골을 채취하였다. 연골조직을 작은 절편으로 자른 후 멸균된 phosphate buffered saline (PBS)로 세척하고 0.2% collagenase (type II, Sigma-Aldrich chemical Co., USA)용액을 37℃에서 5-16시간 처리하여 단일세포로 분리시키고 세포 현탁액을 nylon mesh로 여과해서, 1,000 rpm으로 5초간 원심 분리하였다. 원심분리한 세포를 collagenase free DMEM으로 3회 반복하여 세척과정을 거쳐 단일세포만을 모았다. 분리된 연골세포는 10% fetal bovine serum (FBS)이 포함된 Dulbecco’s Modified Eagle Medium (DMEM)에 넣은 뒤 trypan blue로 염색하고, hemocytometer로 세포수를 산정하였다. 1×10^6cell/35-mm culture dish의 농도로 culture dish에 배지와 함께 넣은 후 세포배양기에서 37℃ (95% air, 5% CO2)의 조건으로 배양하였다.

사람의 관절연골세포는 다지증 소아 환자에서 절제수술을 통해 얻었다. 연구목적과 내용에 대해 보호자에게 자세히 설명하고 절제된 손가락 연골세포를 세포분리를 위해 사용할 것임을 충분히 구두로 설명한 후, 서면동의서를 받고 손가락 검체를 이용하였다. 절제된 양쪽 6번째 손가락을 PBS에 담근 후 피부와 연골막을 제거하여 연골만을 분리하였다. 그리고 연골세포의 분리는 토끼에서와 같은 방법으로 분리하고 배양하였다.
2. 염증반응의 유도

본 연구에서는 배양된 연골세포에서 염증 반응을 유발하기 위하여 cytokine mixture (LPS 1mg/ml + TNFα 1ng/ml + IFNγ 10ng/ml + IL-1β 1ng/ml)을 24시간 동안 처리하였다. Silymarin과 다른물질들 (Apigenin, Butein, Rhoifolin, Kaempferol, Metformine, Carnosine, Aminoguanidine)은 30분 전 처리한 후에 cytokine mixture와 함께 24시간 동안 처리하였다. 세포생존율 측정을 위해서는 CM을 24시간에서 96 시간까지 다양한 시간동안 처리하였으며, silymarin 등은 30분 전처리하였다.

3. Zymographic analysis를 통한 MMP 활성도 측정

MMP의 기질 분해활성은 zymographic analysis를 시행하여 알아보았다. Silymarin과 각각의 물질들을 serum free media에서 30분 동안 전처리 하고 cytokine mixture를 처리한 후 24시간동안 배양하였다. 배양액을 모아 같은 양을 gelatin이 함유된 10% Zymogram gel (Novex®, Invitrogen, Carlsbad, USA)을 사용하여 전기영동을 실시하였다. 전기영동이 끝난 gel은 renaturing buffer에 넣어 1시간 동안 실온에서 반응시킨 후 developing buffer에서 30분 동안 추가로 반응하였다. Gel은 이후 새로운 developing buffer에 넣어 37℃에서 24시간 밤새 반응시켰다. 이후 gel은 0.5% coomassie blue R-250으로 30분 동안 염색하고, 염색이 끝난 후에는 destaining buffer (30% methanol, 10% acetic acid)에 넣고 세척하였는데, 용액을 바꿔주면서 투명 밴드가 나타날 때까지 탈색시켰다. 탈색 후 증류수에서 세척하여 건조시켰다. MMPs에 의해서 gelatin이 분해된 부분은 염색이 되지 않아 푸른색 바탕에 투명 밴드가 나타나게 된다.
4. Western blot analysis

Silymarin을 비롯한 각각의 물질들을 처리한 후 배양액을 제거하고 세포를 PBS로 세척하였다. RIPA buffer (50 mM Tris-HCl (pH 7.4), 0.5% SDS, 1% NP-40, 150 mM NaCl, 1 μM EDTA, 1 mM sodium orthovanadate, 1 mM phenylmethylsulphonyl fluoride, protease inhibitors)를 사용하여 세포를 용해시킨 다음 얼음에서 30분 동안 방치한 후 세포를 완전히 용해시키기 위하여 5초간 4번 초음파 세포파쇄기를 이용하여 완전히 세포액을 용해시켰다. 원심분리(1,000 g, 10min)를 통해 상층액을 얻은 후, BCA microprotein assay kit (Pierce, Rockford, IL, USA)를 이용하여 세포추출액의 단백질농도를 정량하였다. 단백질 정량을 위하여 표준물질은 bovine serum albumin (BSA)을 사용하였으며 BCA kit를 이용하여 562 nm에서 ELISA reader (VERSAmax, Molecular Devices사, CA, USA)로 측정하였다. 정량된 단백질 15-30 μg을 18 μL의 양이 되도록 6x샘플용액 (300 mM Tris-HCl pH 6.8, 10% glycerol, 12% SDS, 0.06% bromophenol blue, 7.5% β-mercaptoethanol, 100 mM dithiothreitol)과 혼합하여 100℃에서 10분간 가열한 후 이를 전기영동 gel에 심었다. 단백질을 분리하기 위한 전기영동을 1.5-2시간 실시한 후, gel상의 분리된 단백질을 25V에서 4시간 동안 polyvinylidene difluoride (PVDF) membrane (Millipore, Bedford사, MA, USA)에 부착시켰다. Membrane은 실온에서 5분간 TBS-T (0.05% Tween 20, 10 mM Tris base, 100 mM NaCl, pH 8.0)로 세척하고 TBS-T를 제거한 후 실온에서 blocking buffer (5% BSA 또는 nonfat dry milk가 함유된 TBS-T)에 1시간 동안 항체와의 비특이적 결합을 억제시켰다. 이후에 blocked membrane은 각 primary antibody를 넣은 TBS-T에 넣고 4℃에서 밤새 동안 반응하였다. TBS-T로 5분씩 6번 세척한 membrane은 실온에서 second antibody인 horseradish peroxidase-conjugated antibody를 1시간 반응시켰다. TBS-T로 5분씩 6번 세척 후 protein band는 Pico-signal ECL system (Pierce, Rockford, IL, USA)로 발색하여 x-ray film에 감광하여 관찰하였다. 단백질 발현 정도는 densitrometry program (Bio-1D, Vilber Lourmat, France)을 이용하여 분석하였 다.
5. 세포생존율 측정 (MTT assay)

세포생존율은 MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay 법을 이용하여 분석하였다. 살아있는 세포는 세포 내로 들어온 MTT를 미토콘드리아 에서 분해하여 보라색의 formazan을 생성하며, 죽은 세포는 이러한 반응을 일으키지 못한다. 따라서 생성된 formazan을 dimethyl sulfoxide (DMSO)로 녹인 후 흡광도를 측정함으로써 세포생존율을 측정하였다.

Rabbit chondrocyte를 96 well-plate에 1×10⁵cells/ml로 각 well 당 200㎕씩 분주하여, 24시간 동안 배양 후 실험에 사용하였다. Chondrocyte에 butein, silymarin, cytokine mixture를 단독 처리 혹은 cytokine mixture와 함께 처리하여 37℃, 5% CO₂ 조건 하에서 배양하였다. 24, 48, 72 또는 96시간 후 약물이 포함되어 있는 배지를 제거하고 0.5 mg/ml의 MTT가 포함된 배지로 교체하여 37℃, 5% CO₂ 조건 하에서 4시간 동안 반응시켰다. 4시간 후 배지를 제거하고 DMSO를 넣어 MTT를 흡착하여 생성된 formazan을 용해시키고 ELISA reader를 이용하여 흡광도(540 nm)를 측정하였다. 세포의 생존율은 대조군의 흡광도에 대한 실험군의 흡광도를 백분율로 환산하여 나타내었다.
실험결과

1. Zymography 분석을 통한 스크리닝

토끼 연골세포를 배양한 후 염증반응을 유발하기 위해 LPS와 cytokine mixture (TNF-α 1 ng/mL + IFN-γ 10 ng/mL + IL-1β 1 ng/mL) (CM)를 24시간 처리하여 matrix metalloproteinases (MMPs) 활성을 zymography로 분석하였다. 항염증을 나타낼 것으로 예측되는 다양한 종류의 flavonoids와 약물들을 전처리하고 CM을 처리하여 관찰한 결과, 이미 연골세포에서 항염증을 나타내는 것으로 알려진 apigenin을 비롯하여 butein, kaemperol (Kf), silymarin 등이 MMP-9의 활성을 억제하는 것으로 나타났다. MMP-2의 경우 apigenin과 silymarin이 활성억제 효과가 있는 것으로 나타났다.(Figure 1).

Apigenin의 경우 10 μM 이상의 농도에서, Butein의 경우 20 μM 이상의 농도에서, Kaemperol은 20 μM, silymarin은 25 μg/mL 이상의 농도에서 의미있는 MMP-9 활성억제 효과가 나타났다. 그러나 inducible nitric oxide synthase (iNOS) 억제제라고 알려진 aminoguanidine (AG)의 경우에는 고농도에서도 CM에 의한 MMP-9 활성증가가 억제되지 않았다. 따라서 MMP-9 활성을 효과적으로 억제하기 위해 반드시 염증성 nitric oxide (NO)의 억제는 필요치 않으며, 염증성 NO가 연골기질 파괴억제에는 관여하지 않는 것으로 판단된다. 그러나 거의 모든 염증성 반응에서 NO의 과다생성이 중요한 역할을 하며, iNOS는 염증반응의 표지단 백질로 의미가 있으므로 추가 실험에서 iNOS의 발현에 대한 영향을 계속 관찰하였다.
Figure 1. Zymographic analysis for the screening of anti-inflammatory effects of various flavonoids. Primary rabbit chondrocytes were treated for 30 min with various anti-inflammatory agents, and then cells were treated with CM (LPS+Cytokines) for additional 24 hrs. *The concentration of silymarin was presented by μg/mL. The result showed that apigenin, butein, silymarin and kaempferol were effective to inhibit the elevation of MMP-9 or MMP-2 activity by CM treatment.
2. 세포생존율에 대한 영향

위와 같은 결과를 토대로 flavonoid 중 silymarin, butein 등이 연골 세포의 파괴의 주요 효소인 MMP활성을 억제하는데 효과적인 것을 확인하였고, 이러한 효소 활성 억제로 연골세포의 파괴를 억제할 수 있을 것이라 판단하였다. 비교적 강력한 MMP-9 억제효과가 나타난 butein과 silymarin이 물질 자체의 세포독성 여부 및 CM에 의한 염증반응에 대한 세포생존율에 미치는 영향을 관찰하기 위하여 세포생존율을 MTT assay를 통해 관찰하였다.

Figure 2에서 나타난 바와 같이, CM에 의해 연골세포는 약 70%의 세포생존율을 나타내었다. 즉, CM의 처리에 의해 연골세포 사멸이 나타남이 확인되었다. 연골세포의 MMP 활성 증가를 억제하는 butein과 silymarin 중에서 butein은 MMP-9 활성억제가 나타나기 시작하는 농도 (20 μM)에서 오히려 세포생존율이 증가하는 경향을 보이다가, MMP-9 억제에 강력한 효능을 보이는 농도 (40 μM)에서는 오히려 CM에 의한 세포사멸을 촉진하는 것으로 나타났다. 반면, silymarin은 MMP-9 활성을 억제하는 측정한 모든 농도범위에서 CM에 의한 세포사멸 억제하거나 큰 영향이 없음이 관찰되었다. 더욱이 Figure 3에서와 같이 시간별 세포생존율에 미치는 silymarin의 영향을 관찰한 결과, silymarin은 처리 시간범위 (24시간 - 96시간)에서 모두 CM에 의한 세포사를 억제하였고, 오히려 세포증식을 촉진하는 것으로 나타났다. 그러나 CM의 처리 없이 silymarin 단독 처리에 의해서는 96시간을 처리할 경우 고농도의 silymarin에서 이러한 세포증식 효과는 감소하였다. CM 처리에 의해 세포생존율은 시간에 따라 유의하게 감소하는 것으로 나타났다. 따라서 MMP 활성억제를 강력하게 나타내는 flavonoid 중에서 silymarin이 butein보다 세포생존율 측면에서 고려할 때, 관절염 치료에 더 유리한 flavonoid로 판단되어 실험을 진행하였다.
Figure 2. Cell viability measurement. Cell viability of rabbit chondrocytes was significantly decreased by CM treatment for 24 hr. In the presence of butein or silymarin, the rabbit chondrocyte was resistant against the cytotoxicity of CM was inhibited except for the high concentration of butein.
Figure 3. Effect of silymarin on cell viability in the presence or absence of CM. Silymarin stimulates chondrocyte proliferation in the presence or absence of CM in a dose-dependent manner. When cells were treated by silymarin for 96 hr, the proliferative effect of silymarin was decreased at high concentration of silymarin (50 µg/mL). The cell viability was significantly decreased by CM treatment dependently on the treated time.
3. 염증성 단백질인 iNOS와 COX-2의 발현에 대한 영향

위에서 언급한 다양한 종류의 flavonoid와 항염증 작용이 있다고 알려져 있는 metformin, carnosine과 같은 물질을 토끼의 연골세포와 사람의 연골세포에 처리하였다. CM의 24시간 처리에 의해 토끼 및 사람의 연골세포에서 대표적인 염증성 단백질인 iNOS와 COX-2의 발현이 크게 증가하였다 (Figure 4). CM을 처리하지 않은 세포에서는 iNOS와 COX-2의 발현이 관찰되지 않음으로써 실험에 사용된 연골세포 자체는 전히 염증반응 단백질이 발현되지 않았음을 확인하였다. CM에 의해 증가된 토끼 연골세포의 iNOS는 butein과 silymarin에 의해 농도 의존적으로 억제되었다. 사람 연골세포에서는 CM에 의해 iNOS의 발현이 증가하긴 하였으나 증가폭은 토끼 연골세포보다 크지 않았다. 사람 연골세포에서는 silymarin과 metformin이 iNOS의 발현증가를 억제하였다. 그러나 COX-2의 발현 양상은 iNOS와 다소 달랐다. 토끼 연골세포와 사람 연골세포 모두에서 CM의 처리에 의해 COX-2의 발현이 크게 증가하였다. 이러한 COX-2의 증가는 silymarin에 의해서는 의미 있게 감소한 반면 metformin은 큰 영향이 없었으며 butein의 경우 토끼 연골세포에서 오히려 CM에 의한 COX-2 발현을 크게 증가시켰다. 이러한 결과는 butein은 COX-2의 발현 증가를 유도하여 염증매개물질인 prostaglandin의 생성을 오히려 촉진할 수 있음을 알 수 있었다. 따라서 CM에 의한 세포생존율 변화와 MMP-9 활성도 및 염증성 단백질 발현 모두에 긍정적 영향을 준 물질은 silymarin이 유일하였다.
Figure 4. Effects of butein, silymarin, kaempferol (Kf), iNOS inhibitor (aminoguanidine; AG), and AMP-dependent protein kinase (AMPK) activator (metformin) on the protein expression of iNOS and cyclooxygenase 2 (COX-2) in rabbit chondrocytes (A) or in human chondrocytes (B). When cells were treated with CM, iNOS and COX-2 expression were dramatically increased in rabbit chondrocytes. Cultured human chondrocytes were not expressed iNOS nor COX-2. When human chondrocytes were treated with CM, COX-2 expression was dramatically increased, whereas the expression of iNOS was slightly increased. Butein and silymarin suppressed the increased expression of iNOS by CM in a dose-dependent manner. Silymarin but not butein inhibited the increased expression of COX-2 in a dose-dependent manner (A). In fact, the butein treatment drastically further increased the expression of COX-2. In human chondrocytes, silymarin
suppressed the elevated expression of COX-2 and iNOS by CM. C, PBS control, D, DMSO control

4. Human articular chondrocytes treatment on MMP-9 expression

Treatment of human articular chondrocytes with CM significantly increased the expression of MMP-9 compared to the PBS control. Such an increase was significantly decreased by silymarin 50 μg/mL or carnosine 5 mM (Figure 5). These results suggest that silymarin is involved in the suppression of MMP-9 expression, partially acting on MMP-9 activity.

Figure 5. The effects of silymarin on the expression of MMP-9. The treatment of cells with CM significantly increased the expression of MMP-9, which was significantly decreased by silymarin (SM) or carnosine (Carn). P, PBS control; D, DMSO control
5. ER stress에 대한 영향

ER stress는 다양한 외부 자극에 의해 촉진된다. ER stress는 본래 세포 스트레스에 대한 반응으로 제대로 성숙되지 못한 단백질 (unfolded protein)이 ER lumen 내에 축적되어 이로 인한 스트레스가 유발되어 ER과 핵을 연결하는 신호전달계가 활성화됨으로써 나타나는 반응으로서 unfolded protein response (UPR)가 유도된다.

이러한 UPR의 대표적 표지 단백질로서 PERK에 의해 인산화 되어 핵 내로 신호를 전달하여 더 이상의 단백질 생성을 억제하는 메개체인 eIF-2α와 UPR에 반응하여 성숙되지 못한 단백질의 ER maturation을 도와주는 chaperone protein인 Grp-78이 있다. 본 실험에서는 사람 연골세포에서 CM의 처리에 의해 eIF-2α의 인산화가 크게 증가하였다. 반면 Grp-78의 발현은 크게 변화하지 않았다. 이러한 현상은 아마도 CM이 PERK의 활성화를 통해 단백질 생성 (translation)을 억제하는 신호를 전달하고, chaperone 단백질의 발현과는 무관한 것으로 판단된다. 측정한 물질 중에서 silymarin과 carnosine가 eIF-2α의 인산화를 의미 있게 억제하였고, 다른 물질들은 큰 영향이 없었으며, 특이하게 silymarin은 Grp-78의 발현도 다소 억제하였다 (Figure 6). eIF-2α의 인산화는 protein translation의 억제와 함께 전사인자인 ATF4의 발현을 촉진시킴으로써 ATF4의 핵 내 유전자 발현 조절이 가능하게 한다. ATF4에 반응하여 다양한 stress response gene과 chaperone들의 발현이 증가하기도 하지만, 세포사멸 단백질인 CHOP (C/EBP homologous protein)의 발현을 증가시키기도 한다. 위의 결과에서 butein과 달리 silymarin은 매우 유의한 세포사멸 억제효과를 관찰하였다. 따라서 이러한 항세포사 효능은 CM에 의해 촉진되는 ER stress 반응, 특히 eIF-2α의 인산화를 억제함으로써 나타나는 기전으로 판단된다.
Figure 6. Inhibitory effects of silymarin on the expression of ER stress responsive protein in human chondrocytes. The phosphorylated eIF-2α (p-eIF2α) was significantly increased by the treatment of cells with CM for 24 hrs, whereas the Grp78 expression was not influenced by CM. The increased phosphorylation of eIF2α was dramatically decreased by silymarin. Carnosine was slightly decreased the expression of eIF2α.
6. Silymarin에 의한 caveolin-1 발현과 Erk 활성 억제

Caveolin-1은 세포막 또는 세포내액에 존재하는 lipid raft protein으로서 최근 다양한 세포신호조절 단백질로 연구가 되고 있다. 특히 노화가 촉진되는 상황에서 caveolin의 발현이 크게 증가하고, 이는 외부에서 유래되는 다양한 신호전달이 효과적으로 세포 내로 전달되지 못하게 하는 원인이 된다는 연구결과들이 보고되고 있다. 그러나 아직까지 정확한 caveolin의 기능은 파악되고 있지 못하며, 그 역할에 대해서는 세포 또는 조직마다 다양하다는 것이 일반적인 견해이다.

사람 연골세포에는 caveolin-1이 다량 발현되고 있으며, 이는 CM의 처리에 의해 크게 변화하지 않았다. 위에서 조사한 다양한 물질 중에 특이하게도 silymarin이 연골세포에서 caveolin-1의 발현을 크게 억제하였다. 본 연구로서 이러한 결과의 임상적 의의를 정확히 판단할 수 없으나 caveolin-1을 노화단백질로 주장하는 이전의 결과에 비추어 볼 때 silymarin의 세포의 노화를 억제하는 물질로도 생각할 수 있다. 이와 유사하게 MAPK (mitogen activated protein kinase)의 일종인 Erk (extracellular signal-related kinase)의 경우에도 silymarin 만이 유의한 결과를 나타내었다. CM의 처리에 의해 사람 연골세포에서 Erk 활성화가 증가하였으며 이는 silymarin에 의해 기저치까지 억제되었다 (Figure 7). Erk는 외부 자극에 의해 활성화되는 MAP kinase의 일종으로서 본 실험의 결과에서 silymarin은 CM의 자극에 의해 활성화된 MAP kinase의 활성을 억제하는 것으로 판단된다.
Figure 7. Inhibitory effect of silymarin on the expression of caveolin-1 (Cav-1) and the phosphorylation of Erk MAPK in human chondrocytes. CM has no effect on the expression level of caveolin-1, whereas CM slightly increased the phosphorylated Erk. Silymarin significantly decreased the expression of cav-1 below the basal level. Phosphorylation (activation) of Erk was also significantly inhibited by silymarin.
IV. 고 찰

이전 채 모델을 통한 연구에서 flavonoid의 일종인 green tea가 관절염 진행을 억제하는 것으로 밝혀졌다. 이러한 억제는 세포의 기질을 이루고 있는 단백당 (proteoglycan)과 혜 2형 폴라 ila의 파괴를 억제함으로써 이루어진다. 파괴를 억제하는 기전은 MMP-1, MMP-13 등의 세포의 분해 효소를 억제하는 것이다. MMP는 단백 분해 효소군으로 정상적인 생리환경에서 세포의 기질의 조절된 분해를 담당한다. 그러나 그 작용이 조절되지 않고, 과도하게 표 현되는 경우는 관절염의 진행과 밀접한 관계가 있다. 초기 MMP에 대한 연구들은 암세포를 통하여 특징물질이 얼마나 MMP를 억제하여 암세포의 전이를 방지할 수 있는지에 대하여 관심을 가지고 그 유용성에 대한 연구가 이루어졌는데, 여러 암세포에 작용하여, reactive oxygen species (ROS) 그리고 pro-inflammatory cytokines like IL-1β 그리고 TNF-α로 자극하여 세포 활동성 을 증진시키고, EGCG를 투여한 후, MMP-2, -9와 같은 gelatinase subgroup들의 표현정도를 측정하여 그 억제를 확인하였다. 이러한 연구에서 MMP를 억제하는 flavonoid 물질군들을 확인하였고, MMP의 또 다른 기능인 연골에 있어서 세포의 기질의 분해능력에 주목하여, 불균형한 MMP의 표현으로 정상연골이 파괴되고, 관절염으로 진행되는데 관심을 가지고 연구하였다. 그러므로 MMP를 억제하는 물질이 결국 관절염의 악화할 수 있다고 판단할 수 있다. 그 외의 연구에서는 특정 후보 물질군의 MMP 억제정도를 측정하여 관절염의 치료에 효과적인 후보물질이 어떤 것인가를 판단하려는 시도들이 있었다. 즉 MMP활성억제 여부를 확인하면 관절염을 억제하는 물질을 단시간에 쉽게 선택할 수 있다고 판단된다. 이에 본 연구에서도 여러 화학 작용이 있는 여러 후보 flavonoids에 대하여 MMP효소의 활성에 미치는 영향을 zymography로 분석하였다. 확인결과 apigenin의 경우는 apigenin 10, 20 μM의 농도에서 MMP-9을 일부 억제하고, butein은 butein 40μM의 농도에서 MMP-9를
강력히 억제하는 것으로 확인되었다(Fig. 1). Rhoifolin은 효과가 없고, Kf(Kaemferol)은 Kf 20μM에서 약간의 억제를 나타냈고, Silymarin은 25, 50μg/mL에서 MMP-2, 9의 강한 활성억제를 나타내었다. 위와 같은 screening으로 silymarin, apigenin, 그리고 butein은 MMP 표현을 효과적으로 억제할 수 있는 flavonoid로 확인되었다. iNOS(inducible nitric oxide synthase)억제자인 aminoguanidine은 연골과의 장에서 효소인 MMP의 활성억제에 전혀 효과를 보이지 않았다. 염증반응의 기전인 NO가 연골과에서는 그 매개기전이 아닌 것을 시사하는 소견이라 하겠다(Fig. 2). 또한 염증적으로 생체 내 투여할 수 있는 물질이어야 함으로 그 독성도를 판단하여 추가적인치료 후보군을 선택하는 것이 필요할 것이다. screening test에서 연골세포 파괴를 억제할 것으로 판단되어진 silymarin과 butein에 대하여 세포 생존성 실험을 하여 임상적으로 세포독성을 측정하였다. 연골세포 염증유발과 함께 세포생존에 대한 영향을 본 결과 silymarin은 MMP 억제농도인 25, 50μg/mL에서 CM (cytokine mixture)에 의한 세포사멸이 대조군에 비해 오히려 생존율이 높이게 결과를 보였 다(Fig. 3). 반면에 butein은 연골세포 파괴 억제농도 (MMP 억제농도) 인 40μM에서 대조군에 비하여 세포사멸이 더 크게 나타남으로서 이러한 butein의 투여로 오히려 연골세포의 손상을 유발할 수 있을 것으로 판단되었다. 각각의 silymarin 농도와 시간의 경과에 따른 세포 사멸 정도를 평가해 본 결과 모든 시간 및 농도에서 세포 사멸을 억제하고 오히려 보호하는 결과를 나타냈다. 위의 결과는 silymarin이 관절염의 진행을 독성없이 방지할 수 있는 물질이라는 것을 보여준다.

silymarin이 관절염에 진행을 막아주는 물질이라는 것은 여러 과거 연구에서 가능성을 보여주고 있다. 현재까지의 silymarin의 작용 기전은 항산화작용, lipid peroxidation 억제, leukotriene 과 prostaglandin의 억제를 통한 항염증 작용, cyclin-dependent kinase등에 작용하여 세포사멸에 관여, 면역 조절 효과 등이다. 그러나 그 작용기전등의 자세한 이해는 부족함이 많다. 과거의 연구 중 De la Puerta 등37)은 여러 급성염증의 동물모델에서 silymarin의 효과를 실험하였다.
Wstar rat에 Carrageenan으로 족부 부종을 만들고 silymarin을 경구 투여하면 족부 염증이 감소하는 것으로 관찰하였다. xylene으로 유도시킨 쥐 귀에 염증을 유발시키고 silymarin을 도포하면, 그 염증이 indomethacin 을 복강 내 투여한 것보다 유의하게 효과적으로 감소하는 것을 관찰하였다. Leukocyte migration은 염증과정에서 주요 관여 기전이다. silymarin은 carrageenan으로 유도된 leukocyte migration을 집중적으로 억제하는 것이 관찰되었다. silymarin은 염증과정에 관여하는 phospholipase A2 효소의 작용을 억제하는 데 못하고, lipoxygenase와 cyclooxygenase의 작용을 억제하여 염증반응을 감소시킨다.

Gupta 등은 silymarin의 항 염증작용과 항 관절염작용 기전은 5-lipoxygenase와 관련이 있다고 하였다. carrageenan에 의하여 유도된 부종, papaya latex(PA)에 의하여 유도된 부종 그리고 arachidonic acid(AA)에 의하여 유도된 부종에서 각각 측정하였다. AA모델에서 silymarin 25mg/kg를 경구 투여하였을 때 36.84%의 부종감소를 관찰하였고, 이것은 염증 유발 기전 중 5-lipoxygenase와 Leukotrienes의 형성 억제를 통하여 유발된 것으로 밝혔다. mycobacterial adjuvant로 유도된 관절염 활성정도를 측정한 결과 Silymarin 6.25, 12.5 그리고 25mg/kg 경구투여로 의미 있게 농도 연관되어 투여 13일에 14.87, 23.73, 그리고 31.64%의 염증 감소 소견을 보였다.

염증의 진행에 있어서 NO가 관여하고 기능하는 것으로 알려져 있고, 이러한 작용기전에 flavonoid가 작용하는가 하는 것은 흥미로운 일이다. 일반적으로 Nitric oxide는 매우 활동적이고, 확산되는 불안정한 radical로 여러 생리학적인 과정에 중요한 기능에 관여한다. 세포면역, 혈관생성, 혈소판 응집 등 Nitric oxide는 nitric oxide synthase에 의하여 L-arginine으로부터 합성된다(Fig. 9). NOS은 3개의 isoform으로 나뉜다. 첫째는 bNOS로 뇌조직에 있는 것이고, 둘째는 eNOS, NOS-3 셋째는 유도된 효소 (inducible enzyme;NOS-2, iNOS)로 탐식세포의 세포 파괴능력을 담당한다. 즉, iNOS의 발현정도를 측정하여 관절염 유발과 그 억제 인자의 작용기전을 확인할 수 있을 것으로 판단한다.
본 연구에서 연골세포에 CM(cytokine mixture)를 처리하여 염증을 유발시키고 염증 관련 단백질인 iNOS(induced NO synthase)와 제2형 Cyclooxygenase의 발현에 영향은 미치는 다양한 약물들의 영향을 측정하여, 그 결과로 silymarin은 농도 의존적으로 두 관련 단백질을 억제하는 것으로 나타났고, Butein의 경우는 iNOS(induced NO synthase)은 억제하지만, 제2형 Cyclooxygenase는 오히려 증가시켜 염증성 prostaglandin생성이 촉진되는 결과를 보였다 (Fig. 4).

관절염의 진행이 악화는 지금까지 언급하였던 관절염 매개 물질(iNOS, cyclooxygenase)의 활성, 관절구성요소인 세포외 기질의 분해를 조장하는 단백물질의 활성 등 이외에 관절염물 세포 자체의 노화나 세포 사멸과정에 작용할 가능성이 주목하는 것이 새로운 작용기전을 발현할 수 있고, 이런 작용기전은 과거에 설명하지 못했던 관절염 진행 양식을 설명할 수 있을 것이다.

그 기전 중 apoptosis에 주목하여 그 영향을 밝히는 것이 의미 있을 것이다. 세포의 지정된 apoptosis에 관여하는 기전 중, endoplasmic reticulum (ER) stress response에 의하여 영향을 받는다. ER stress response는 ER stressor로부터 ER(endoplasmic reticulum)을 보호하는 세포 기전이다. ER내 unfolded protein의 축적은 UPR(unfolded protein response)라는 ER stress response를 유발한다. 포유동물의 ER stress response는 3가지 형태의 transmembrane proteins가 작용한다. protein-kinase와 site-specific endoribonuclease(IRE1), protein kinase R-like ER kinase/pancreatic eIF2 kinase(PERK/PEK), 그리고 activating transcription factor 6(ATF 6)등15, 16, 17이다. mammalian ER stress response는 adaptation과 apoptosis로 2단계의 반응을 나타낸다. 세포는 초기에 당 조절 단백질이며, ER-resident stress protein (molecular chaperons)이 축적되는 unfold protein (ER GRP78, GRP94)을 refold함으로서 사멸되지 않고 항상성을 유지하여 생존한다18, 19, 20. 그러나 특정 기준 함수를 넘어서는 과도한 unfold protein이 축적되면 ATF6-와 ATF4에 의존적인 C/EBP homologous transcription factor (CHOP)의 활성에 의하여 apoptosis 단계로 발전한다21. 이러한 사실은 특정조건으로 apoptosis을
유발시키고 그러한 작용을 억제하는 억제자를 투여하여 매개체인 GRP78과 transmembrane protein (CHOP) 등의 활성을 측정하면 그 억제자의 효능 (세포 사멸 억제)을 측정할 수 있다.

본 연구에서는 cytokine mixture로 외부자극의 가하여 세포사멸을 유발시키고, 유발억제가 기대되는 각각 농도의 silymarin 투여한다. 이후 유발되는 ER stress response를 정도를 측정하기 위하여 그 관여인자인 unfold protein인 GRP78과 transmembrane protein인 eIF-2α를 측정하여 50μg/ml 농도의 silymarin이 GRP78을 줄이고, eIF-2α의 인산화를 억제하는 것을 확인하였다 (Fig. 6).

관절 연골세포에 관하여 이러한 세포의 노화는 결국 관절염을 진행을 의미하는 것으로 판단된다. 관절연골의 퇴행과 노화는 비정상적으로 중년의 나이에 과도하게 진행되는 경향이 관찰되는데 이것은 세포의 기질의 작할한 유지가 나이에 의존적으로 감소하는 것을 의미한다. 이전의 연구는 실험관내의 실험에서 연골세포의 세포사멸현상에 주목하여, 세포사멸과 연관되는 β-galactosidase 활동이 나이와 연관되어 고령일수록 활동성이 증가하고, 반대로 고령일수록 분열능력과 평균 telomere length (MTL)은 적어지는 것을 보고하였 다49). 관절연골에서 나이와 연관된 변화들은 조직의 퇴행변화가 쉽게 유발된다는 것을 의미하고, 이러한 것을 세포사멸사멸이 관절염과 노화에 공통적으로 기여한다는 것을 의미한다. 관절염이 진행되고 있는 경우는 β-galactosidase 활동이 증진되고, 평균 telomere length (MTL)가 짧아지는 것이 관찰된다41). 또한 노화된 세포막의 형태적인 변형으로 caveolae가 형성되며, caveolae는 plasma membrane의 vesicular invagination이다. 자극으로 유도된 세포 사멸의 경 우는 caveolae를 구성하는 구조 단백질인 caveolin 1이 증가한다23, 24). 이러한 소견은 caveolin 1이 외부 자극으로 유도되는 세포 조기 사멸과 밀접한 관련이 있으며, caveolin 1이 세포 조기 사멸에 중요한 기능을 담당함을 보여준다. 최근의 연관조직 분석에 따르면 caveolin 1이 정상 관절연골에도 발현되는 것으로 확인25)되나, 그 존재이유는 명확하지 않다. 현재까지의 연구를 통하여 IL-1β, oxygen free radicals등과 같은 stress에 의하여 유도되는 세포사멸에 caveolin
본 연구에서는 cytokine mixture로 관절연골 세포의 세포 조기사멸을 유도하였으나, caveolin 1의 발현이 증가하지는 않았다. 그러나 50μg/ml silymarin을 첨가하여 관절 연골 세포의 세포조기사멸을 유도하면 caveolin 1발현이 현저하게 감소하는 것으로 나타났다 (Fig. 7). 이는 silymarin에 의해 연골세포의 노화 억제 기능이 있다는 것을 시사하는 소견이다.

추가적으로 telomere 의존적 또는 비 의존적 세포 사멸이건 실행분자로 p38MARK가 작용하고26), 이러한 p38MARK는 ERK/MARK 작용기전과 연관되어 발생함으로 세포 사멸에 이러한 작용기전이 중요하다고 하겠다. 그러므로 Erk (extracellular signal regulated kinase)의 활성정도를 측정하는 것은 세포사멸 활성을 측정하는 것으로 해석된다.

본 연구에서 외부 스트레스자극에 의해 활성이 증가하는 MAPK의 일종인 Erk (Extracellular signal-regulated kinase)의 활성을 측정하였는데 Erk의 인산화된 활성형태인 phospho-p44 (Erk 44kDa), phospho-p42 (Erk 42kDa)를 측정하여 그 감소를 확인하였다. 이는 silymarin에 연골세포의 노화가 억제될 수 있는 가능성을 보여준다 하겠다.
V. 결 론

관절 세포의 기질의 분해하는 MMP 활성에 효과적인 flavonoid는 silymarin, apigenin 그리고 butein이다. cytokine mixture로 유도된 MMP활성을 iNOS inhibitor인 apigenin은 억제하지 못한다. 이러한 결과는 관절 연골세포의 염증 유발 기전으로 NO는 기여하지 못하는 것으로 판단된다. silymarin은 iNOS와 COX2 생성에 관여 염증억제작용을 하고, 연골 세포의 기질 분해를 담당하는 MMP-9 표현을 억제하여 관절염 발병을 억제한다. silymarin은 ER stress response를 억제하고, caveolin 1의 표현 그리고 Erk의 활성을 억제하여 연골세포의 파괴, 그리고。

즉, silymarin은 염증에 관여하는 효소(COX-2)를 억제하고, 연골 세포의 기질의 파괴를 억제하며, 연골 세포 자체의 노화 및 조기사멸을 방지하여 여러 기전을 통하여 관절염의 발생을 억제한다.

향후 복합체로서의 silymarin의 구성 성분 중 각각의 성분의 구체화된 평가가 필요할 것으로 판단되며, 또한 생체실험(in vivo)을 통하여 실제 관절염의 경감효과를 규명하는 것이 필요할 것으로 판단된다.
참 고 문 헌

31 Adcocks C, Collin P, and Buttle DJ (2002) Catechins from green tea
(Camellia sinensis) inhibit bovine and human cartilage proteoglycan and

33 Murphy G, Knauper V, Atkinson S, Butler G, English W, Hutton M,

Tumor gelatinases and invasion inhibited by the green tea flavanol
epigallocatechin-3-gallate. *Cancer* 91: 822 - 832.

35 Cheng XW, Kuzuya M, Kanda S, Maeda K, Sasaki T, Wang QL,
binding to MMP-2 inhibits gelatinolytic activity without influencing the
attachment to extracellular matrix proteins but enhances MMP-2 binding to

36 Skiles JW, Gonnella NC, and Jeng AY (2001) The design, structure, and
therapeutic application of matrix metalloproteinase inhibitors. *Curr Med
Chem* 8: 425 - 474.

37 De La Puerta R, Martinez E, Bravo L, Ahumada MC. Effects of silymarin
on different acute inflammation models on leukocyte migration. *J Pharm

