자유자작권 프리어 İzmir 2.0 메인문서

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.
- 이 저작물을 작성할 수 있습니다.
- 이 저작물을 영리 목적으로 이용할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

BY:
자유자작권, 귀하는 원작작자를 표시해야 합니다.

C:
동일 조건변경허락, 귀하가 이 저작물을 깨끗, 변경 또는 가공했을 경우에는, 이 저작물과 동일한 이용허락조건하에서만 배포할 수 있습니다.

- 귀하는, 이 저작물의 재사용이나 배포의 경우, 이 저작물에 적용된 이용허락조건을 확실히 나타내야 합니다.
- 저작권자로부터 별도의 허가를 받으면 이러한 조건들을 적용되지 않습니다.

저작권법에 따른 이용자의 권리나 이의 배포에 отношении 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer ☰
Sum-Rate Capacity Enhancement using Orthogonal Beamforming
이 논문을 정영근의 박사학위논문으로 인정함

2008年 2月

主審

副審

委員
목 차

그림목차 ... iii
국문요약 ... iv
영문요약 ... v

제1장 서론 ... 1

제2장 다중 사용자 다이버시티 .. 3

2.1. 무선채널 특성 ... 3
 2.1.1. 경로감쇄 .. 3
 2.1.2. 거시적 페이딩 .. 5
 2.1.3. 근시적 페이딩 .. 7
2.2. 다중안테나 기반 무선채널 .. 8
2.3. 다중 사용자 다이버시티 .. 11
2.4. 무선자원 할당 알고리즘 ... 14
 2.4.1. 순차적 할당 알고리즘 14
 2.4.2. 최대 전송률 할당 알고리즘 15
 2.4.3. 상대적 균등 할당 알고리즘 16

제3장 다중 빔 형성기술 ... 20

3.1. 빔 형성기술 ... 20
3.2. 빔 형성기술을 위한 다중 안테나 구성과 기능 20
3.3. 기회적 빔 형성기술 .. 22
3.4. 불규칙 빔 형성기술 .. 24
3.5. Zero forcing 빔 형성기술 .. 27
3.6. 정칙행렬 기반 전송률 제어기술 30

제4장 결합 직교 다중 빔 형성기술 .. 33

4.1. Gram-Schmidt 직교화 방법을 이용한 조향행렬 생성 34
4.2. 직교 조향행렬을 이용한 사용자 선정방법 36
4.3. 뇌막임량 감소를 위한 기술 38
제5장 전산 모의실험

5.1. 결합 직교 다중 빔 형성기술의 합용량
5.2. 한정된 되먹임을 고려한 결합 직교 빔 형성기술
5.3. 송신단 전력제어에 의한 합용량 증대

제6장 결론

참고문헌
그림 목차

그림 1. 자유공간 경로감쇄 모델 4
그림 2. Plane-earth 경로감쇄 모델 5
그림 3. Log-normal 페이딩의 누적 분포함수 6
그림 4. MIMO 시스템 채널용량 10
그림 5. 다중 사용자 다이버시티 기반 무선 자원할당 11
그림 6. 전환형 범 형성기술 및 적응형 범 형성기술의 범 패턴 21
그림 7. Dumb 안테나 기반 범 형성기 48
그림 8. MUDAM 범 형성기술 사용자 선정순차 25
그림 9. Zero forcing 범 형성기술의 준 직교 사용자 선정순차 28
그림 10. 정칙형렬 기반 전송률 제어기술 사용자 선정순차 31
그림 11. 결합 직교 다중 범 형성기술의 사용자 선정순차 37
그림 12. 2×1 MISO 환경에서 합용량 성능 41
그림 13. 3×1 MISO 환경에서 합용량 성능 41
그림 14. 2×1 MISO 환경에서 불규칙 범 형성기술과 합용량 비교 42
그림 15. 3×1 MISO 환경에서 불규칙 범 형성기술과 합용량 비교 43
그림 16. 2×1 MISO 환경에서 되먹임강 감소에 따른 합용량 성능변화 44
그림 17. 3×1 MISO 환경에서 되먹임강 감소에 따른 합용량 성능변화 44
그림 18. 2×1 MISO 환경에서 전력제어에 따른 합용량 성능변화 45
그림 19. 3×1 MISO 환경에서 전력제어에 따른 합용량 성능변화 46
요 약

차세대 통신 시스템은 더 높은 전송률 요구를 만족하기 위해 다중 안테나를 이용한 기술이 많이 연구되고 있다. 이러한 연구의 결과로 다이버시티, 멀티플렉싱 및 범 형성기술에 대한 많은 알고리즘이 개발되었다. 이러한 기술들은 무선 링크의 안정성, 전송효율 향상 및 배열이득을 얻을 수 있는 장점을 가지고 있다. 그러나 이러한 연구는 무선 링크 관점의 성능향상을 위한 연구로 셀 처리량 증대를 보장하지 못한다.

최근 다중 사용자 환경에서 다중 범 형성기술을 이용한 셀 처리량 증대기술이 연구되고 있다. 이러한 기술은 승선단 다중 안테나를 기반으로 다중 범을 형성하여 멀티플렉싱 이득 및 순서적으로 채널 상태가 좋은 사용자에게 우선권을 할당함으로써 다중 사용자 다이버시티를 얻는다. 이러한 기술들은 다중 사용자의 많은 채널정보를 필요로 하거나 다중 범을 형성하기위해 필요한 조향벡터를 순차적으로 구해야만하는 형태를 가지고 있어서 구현의 어려움이 있다.

본 논문에서 제안한 결합 직교 다중 범 형성기술은 첫 번째 사용자를 우선 선정한다. 첫 번째 사용자의 채널 상태정보를 이용하여 조향벡터 계산하고 계산된 조향벡터를 기준 벡터로 하여 Gram-Schmidt 직교화 과정을 수행하여 직교조향행렬을 구한다. 직교조향행렬을 이용하여 직교 다중 범을 형성을 통해 다중 사용자에게 각 다중 범에대한 신호대 간섭음비율을 최적임을 받아 다중 범에 적합한 사용자를 선정한다. 선정된 사용자의 채널상태정보를 기반으로 승선단 전력제어를 수행하게 된다. 제안한 기술은 첫 번째 범이 다른 직교범에 의해 간섭을 받지 않으며 다른 직교범들은 기회적 범 형성기술과 동일하게 다중 사용자 다이버시티 이득을 얻는 특징을 갖는다. 전산 모의실험을 통해 종래의 불규칙 다중 범 형성기술과 비교해 다중 사용자 수가 적은 환경에서 높은 합용량 증대성을 보였다.

색인어: 기회적 범 형성기술, 불규칙 범 형성기술, 정직형형렬 기반 전송률 제어 기술, 우선 자원할당, waterfilling
Abstract

Multiple input multiple output (MIMO) technologies have been studied for the next generation communication systems to meet the demand of high data rate. Diversity, multiplexing and beamforming algorithms provide advantages of link reliability, higher data rate and cell coverage extension respectively. These methods, however, do not guarantee increase of cell throughput.

Various multiple beamforming schemes have been proposed to obtain multiplexing and multiuser diversity for increasing cell throughput. Both multiplexing gain by multiple beamforming and multiuser diversity by scheduling multiple beams are obtained. Large amount of feedback of channel state information, however, are required to be implemented.

To reduce complexity and large feedback, a combined opportunistic multiple beamforming method is proposed. The proposed scheme utilizes the channel state information of a reference user to generate a reference steering vector. The other orthogonal steering vectors are calculated by Gram–Schmidt orthogonalization from the reference beam. These beams are transmitted and SINRs of all users are feedback to the base station. The base station selects users who have good channel conditions. Finally, the proposed scheme obtains an additional gain by controlling the transmit beam power based on the SINRs of the selected users.

The advantages of the proposed scheme are that the first beam is not interfered from other orthogonal beams and the other orthogonal beams operate opportunistically to obtain multiuser diversity and multiplexing gain. The computer simulation demonstrated that the proposed scheme is an effective method increasing sum rate at the small number of users, which is common in cellular systems, and outperformed conventional random beamforming methods.
Index Terms: Opportunistic beamforming, random beamforming, PU2RC(Per Unitary User Rate Control), radio resource scheduling, waterfilling
제1장 서론

무선 통신 시스템은 더 높은 전송률 요구를 만족시키기 위해 지속적으로 연구가 진행되었다. 2세대 통신 시스템에서 안정적인 무선 링크를 이용한 통신을 위해 채널 부호화, 고차 변복조 기술 등의 통신 무선 링크 적응기술에 대한 연구가 활발히 진행되었다. 3세대 이동통신으로 넘어오면서 다중 안테나를 이용한 기술이 활발히 연구되어 왔으며 크게 세 가지로 분류할 수 있다.

송신단 다중 안테나 기반의 다이버시티 기술은 동일한 신호를 송신단 다중 안테나를 통해 전송함으로써 다이버시티를 얻어 송신단 및 수신단 간에 비트 오류율을 감소시키는 기술로 구조가 간단하여 구현이 쉬우며 무선 링크의 안정성을 얻을 수 있다. 송신단 및 수신단의 다중 안테나를 기반으로 하는 멀티플렉싱 기술은 송신단 및 수신단을 무선 채널행렬로 가정하여 무선 채널을 정칙화함으로써 동시에 다중신호를 전송할 수 있으며 전송률 항상의 효과를 얻을 수 있다. 송신단 다중 안테나를 기반으로 하는 범 형성기술은 송신단과 수신단이 공간적으로 이루고 있는 위치상의 정보를 이용하여 각 범열안테나의 위치를 체계적으로써 수신단 신호를 결합하고 최대화 하는 기술이다. 이러한 범 형성기술은 범열이득을 얻음으로써 통신 시스템의 최대 통역 전송률 증대할 수 있으며 링크 적응기술을 이용하여 전송률 증대 및 무선 링크의 안정성을 얻을 수 있다.

최근 다중 사용자 환경에서 다중 안테나를 이용한 전송기술에 대한 연구가 활발히 진행되고 있다. 이는 종래의 송신단 및 수신단 사이의 무선 링크의 전송률 및 안정성 향상에서 셀 관점의 처리량 증대를 목적으로 하고 있다. 이러한 셀 처리량 증대를 위해 많은 연구가 진행 중이며 다중 범 형성기술을 이용한 멀티플렉싱 기술과 순시적 채널상태가 좋은 사용자에게 무선 자원을 할당함으로써 다중 사용자 다이버시티를 얻는 기술 등이 대표적이다.

다중 범 형성기술을 이용한 멀티플렉싱 기술은 다중 사용자 환경에서 각 사용자의 채널 상태가 독립적이며 비상관적인 특성을 이용하여 각 다중 범에 채널 상태가 간섭을 주지 않는 사용자들을 선정하여 다중의 신호를 동시에 전송하는 기술이다. 또한 다중 사용자 다이버시티를 얻는 기술은 무선 자원을 순시적 채널 상태가 좋은 사용자에게 할당함으로써 셀 처리량을 증대시키는 기술
이다. 이 두 가지의 기술은 결합이 용이하여 다중 범을 형성하는 멀티플렉싱 이득과 형성한 각 범에 순시적 채널 상태가 좋은 사용자를 선정함으로써 다중 사용자 다이버시티를 동시에 얻을 수 있다.

다양한 알고리즘 중에서 dummy 안테나를 사용하여 채널의 시변특성이 좋지 않은 환경에서 다중 사용자 다이버시티 이득을 얻는 기술과 순차적으로 다중 범을 형성하여 멀티플렉싱 이득과 다중 사용자 다이버시티를 획득하는 기술 및 준 직교 사용자 선정과정을 통해 다중 범 형성을 위한 사용자를 선정하고 Zero forcing 기술을 이용하여 조향행렬을 구하는 기술이 대표적이다. 그러나 이러한 기술은 각각 순차적 범 형성에 의해 발생하는 채널 시변에 의한 간섭 전파, 송신단에서 모든 다중 사용자의 채널 상태정보를 알고 있어야 하는 문제점을 가지고 있다.

이러한 문제점을 해결하기 위해 본 논문에서는 결합 직교 다중 범 형성기술을 제안하였다. Gram-Schmidt 직교화 방법을 이용하여 다중 범 형성을 위한 직교 조향행렬을 한번에 구함으로써 순차적인 범 형성에 의해 발생하는 채널 시변에 의한 간섭을 전파문제를 해결하였으며 일부의 다중 사용자의 채널정보만을 이용한 다중 범을 형성함으로 멀티플렉싱 이득과 다중 사용자 다이버시티를 얻는다.

셀 처리량 증대를 위해 제안한 결합 직교 다중 범 형성기술의 내용을 설명하고 성능을 검증하기 위해 2장에서는 다중 사용자 다이버시티에 대해 알아보고 3장에서는 다중 범 형성기술과 다중 범 형성기술을 통한 기회적 범 형성기술, 불규칙 다중 범 형성기술, Zero forcing 범 형성기술 및 정직행렬 기반 전송률 제어기술에 대해 살펴본다. 4장에서는 제안한 결합 직교 다중 범 형성기술을 자세히 설명한 후 5장에서 전산 모의실험을 통해 성능을 평가하고 6장에서 결론을 맺는다.
제2장 다중 사용자 다이버시티

2.1. 무선채널 특성

2.1.1. 경로감쇄

무선 통신 시스템의 성능향상을 위해 다양한 방면의 연구가 진행되어 왔다. 무선 채널 환경의 성능향상에 가장 큰 영향을 미치는 요인은 무선채널 그 자체이다. 무선 채널의 특성을 이해하고 이를 이용하여 더 높은 링크 전송효율 및 셀 관점 처리량 증대를 위해 많은 기술들이 연구되어 왔다. 무선 채널의 특성은 전파의 전파로 인한 전력손실에 기인하는 경로감쇄, 지형적 음역지역 발생에 의해 생기는 거시적 페이딩 및 송신단과 수신단 사이의 산란에 의해 주파수, 공간적 시간적으로 신호의 비교적 빠른 변화를 나타내는 근시적 페이딩으로 구분된다. 송신신호가 무선채널을 통해 전파됨에 따라 전력손실에 의해 발생하는 경로 감쇄는 물리적인 현상으로 무선 채널 모델에 따라 다양하게 모델링 된다. 가장 간단한 자유공간 경로손실 모델[1]의 경우 아래의 식 (1)과 같이 모델링 된다.

\[L_p = \left(\frac{4\pi d}{\lambda} \right)^2 \]

식 (1)에서 \(d\)는 송신단과 수신단 사이의 거리를 나타내며, \(\lambda\)는 반송파의 파장의 길이를 나타낸다. 식(1)은 Friis 방정식이라고 알려져 있으며, 이러한 자유공간 경로감쇄 모델은 경로감쇄에 가장 큰 영향을 미치는 지수 승이 2이다. 다시 말하면 거리에 제곱에 비례하여 전파의 전파에 의한 감쇄가 증가하게 된다. 자유공간 경로감쇄 모델과는 달리 셀룰러 환경의 무선채널은 전파가 건물 및 정지된 다양한 물체와의 산란 현상에 의해 다양한 경로를 통해 전파됨으로 일반적으로 자유공간 경로감쇄에 비해 경로감쇄가 더 크다. 이러한 셀룰러 환경의 무선채널 모델 중 가장 간단한 모델은 지표면의 반사에 의한 2경로를 고려한 plane-earth 모델이 있다. 이 모델의 경로손실은 식 (2)와 같다.
식 (2)에서 \(d\)는 송신단과 수신단 사이의 거리를 나타내며, \(h_t, h_r\)은 각각 송신 단 및 수신단의 안테나의 높이를 나타낸다. 이러한 plane-earth 모델에서 \(d \gg h_t, h_r\) 라는 가정을 만족해야 한다. 일반적으로 송신단 안테나 및 수신단 안테나 의 높이는 송수신단 사이의 거리에 비해 무시할 수 있을 정도로 작음으로 충분히 만족될 수 있는 조건이다. 이 모델의 경로손실 지수승은 4가 되어 자유공간 경로손실 모델에 비해 더 빠르게 경로손실이 증가함을 알 수 있다. 실제 무선채널에서의 경로손실 지수승은 2.5에서 6까지 다양하게 변화한다. 이러한 경로손실 지수승의 변화는 무선 채널 환경에 그 원인이 있으며 송신단과 수신단 사이의 지형적 요인에 의해 변화한다.
이 외에도 많은 경로감쇠 모델들이 개발되어 현재 쓰이고 있으며 그 중에서도 Okumura, Hara, COST 231, Erceg 및 ITU-R M. 1225 모델들이 대표적으로 많이 사용되고 있다.

2.1.2. 거시적 페이딩

무선채널의 특성 중 건물에 의해 발생하는 음영이나 지형의 높낮이에 의해 생기는 거시적 페이딩(long-term fading) 현상은 송신단에서 전송하는 신호의 세기가 약해지는 음역지역을 발생시킨다. 앞서 살펴본 경로감쇠는 송신단과 수신단의 거리에 의해 그 영향이 결정되는데 반해 근시적 페이딩 현상은 지형적 영향에 의해 발생한다. 거시적 페이딩 현상은 송신단 및 수신단의 위치가 크게 변화하지 않는 경우 송신신호의 변화가 적어 측정이 가능하며 시간상에서 오랜 시간에 걸쳐 그 특성이 변화한다. 또한 거시적 페이딩 현상은 지형적 높낮이 차나 큰 건물 등에 의해 음역지역이 발생함에 따라 생기는 특성이기 때문에 음영
(shadowing)라고도 불리며 Log-normal의 확률 밀도 함수로 모델링 된다. 거시적 페이딩 현상의 확률 밀도 함수는 식 (3)과 같다.

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

식 (3)에서 \(x\)는 거시적 신호 변화(long-term signal fluctuation)을 나타내며, \(\mu\)와 \(\sigma\)는 각각 \(x\)의 평균과 표준편차를 나타내며 데시벨 값을 사용한다. \(\mu\)는 경로손실에 의해 결정되는 값이며, \(\sigma\)는 무선채널 환경에 따라 다른 값으로 결정되며 셀룰러 기반의 무선 통신 시스템에서는 통상적으로 8dB의 값이 사용된다.

그림 3. Log-normal 페이딩의 누적 분포함수
2.1.3. 근시적 페이딩

무선채널의 특성 중 근시적 페이딩(short-term fading) 현상은 송신된 신호가 주파수, 공간 및 시간상에서 빠르게 변화하는 특성이다. 이는 송신단과 수신단 사이에 존재하는 산란에 의해 발생하는 현상으로, 거시적 페이딩의 경우와 같이 정지되어있고 건물이나 지형적 특성에 의해 발생한다면 송신단 및 수신단 주변에 위치하는 산란자에 의한 송신신호의 반사 및 산란현상에 원인이 있다. 근시적 페이딩 현상에 의해 무선채널은 주파수, 공간 및 시간상에서 빠르게 변화한다. 이러한 근시적 페이딩 형상에 의해 수신된 수신신호는 크게 직접경로(line of sight path)의 유무에 따라 크게 두 가지로 구분된다. 직접경로가 없다고 가정되는 근시적 페이딩 형상의 전폭 및 위상의 모델링은 식 (4)와 같이 각각 Rayleigh 분포와 균일분포를 갖는다.

\[
 f(x) = \frac{2x}{\Omega} e^{-\frac{x^2}{\Omega}}, \quad f(\theta) = \frac{1}{2\pi} \tag{4}
\]

식 (4)에서 \(\Omega\)는 수신신호의 평균전력이다. 또한 \(u(x)\)는 단위계단 함수로 \(x\)가 음수가 아닌 경우에만 1로 정의된다. 직접경로가 있다고 가정되는 근시적 페이딩 형상의 전폭 및 위상의 모델링은 아래의 식 (5)와 같다. 각각 Ricean 분포와 균일분포를 갖는다.

\[
 f(x) = \frac{2x(K+1)}{\Omega} e^{-Kx^2} \left(2\sqrt{\frac{K(K+1)}{\Omega}}u(x) + \frac{1}{\sqrt{\pi}} \right), \quad f(\theta) = \frac{1}{2\pi} \tag{5}
\]

식 (5)에서 \(K\)는 Ricean factor로 \(K\)의 값이 0에 가까워지면 직접경로가 없는 Rayleigh 페이딩으로 근접하게 되며 \(K\)값이 무한에 가까워질수록 직접경로만 존재하는 Gaussian 페이딩에 근사하게 된다. 이 외에도 근시적 페이딩 형상을 모델링하기 위해 사용되는 채널모델은 Nakagami 채널모델 및 Markov 채널모델 등이 있다.
2.2. 다중 안테나 기반 무선채널

다중안테나 기반 무선 통신 시스템은 차세대 통신 시장에서 요구되는 고속의 데이터 전송을 위해 필요한 용량증대를 효과적으로 달성하기 위한 기술로 많은 연구가 진행되고 있다. 이러한 다중안테나 시스템은 일반적으로 송신단 및 수신단 안테나수의 증가에 따라 용량이 선형적으로 증가한다.

다중 안테나 기반 무선채널은 송신단 안테나와 수신단 안테나 사이에 독립적인 경로의 원소를 갖는 무선채널 행렬로 표현된다. 송신단 안테나수가 M개이고 수신단 안테나 수가 M인 경우 다중 안테나 기반 무선채널은 \(M \times M \) 크기를 갖는 행렬의 형태를 취하게 된다. 이러한 무선 채널행렬의 원소는 수는 송신단 안테나 수 M과 수신단 안테나 수 M의 곱과 같다. 식은 무선 채널행렬의 형태를 나타내고 있다.

\[
H = \begin{bmatrix}
 h_{11} & h_{12} & \cdots & h_{1M_r} \\
 h_{21} & h_{22} & \cdots & h_{2M_r} \\
 \vdots & \vdots & \ddots & \vdots \\
 h_{M_t1} & h_{M_t2} & \cdots & h_{M_rM_t}
\end{bmatrix}
\]

식 (6)에서 무선채널 행렬의 각 원소 \(h_{ij} \)는 경우 j번째 송신단 안테나로부터 i 번째 수신단 안테나 사이의 무선채널의 복소값을 의미한다. 무선 채널행렬은 송신단에 다중안테나와 수신단의 단일 안테나의 MISO의 경우 \(1 \times M_r \)의 행 벡터의 형태를 가지게 되며 송신단 단일안테나와 수신단 다중 안테나의 SIMO의 경우 \(M_t \times 1 \)의 열 벡터의 형태를 가지게 된다.

다중안테나 시스템의 채널용량\([4]\)은 송신단과 수신단의 안테나 수에 의해 구분된다. 송신단 및 수신단 모두 단일 안테나를 사용하는 SISO 환경의 채널용량은 식 (7)과 같이 표현된다.

\[
C_{\text{SISO}} = \log_2 \left(1 + \frac{E_s}{N_0} \right)
\]

(7)
식 (7)에서의 E_s는 송신 심볼의 에너지를 나타내고 N_0은 잡음의 분산을 나타낸다. E_s와 N_0의 비는 신호대 잡음비로 되어 Shannon의 용량식과 동일하다. SISO 환경의 채널용량은 신호대 잡음비가 증가함에 따라 비선형적으로 증가하게 된다.

$$C_{MISO} = \log_2 (1 + \frac{E_s}{M_iN_0} \| \mathbf{h} \|^2_F)$$ \hspace{1cm} (8)$$

식 (8)은 M_t개의 송신단에 안테나와 수신단 단일 안테나 환경의 채널용량을 나타내고 있다. $\| \mathbf{h} \|^2_F$은 제곱 프로브니스 놈(squared Frobenius norm)을 의미한다. 송신단에 M_t개의 안테나를 가진 채널용량은 로그식의 안쪽에 송신단 안테나 수 M_t개에 반비례한다. 이것은 송신전력 제한에 의해 송신단에 다중 안테나를 사용하지도 각 안테나의 송신전력의 합은 송신전력 제한을 넘지 못하기 때문이다. 그러나 송신단 다중 안테나 환경에 경우 송신단 안테나 별로 독립적인 무선채널을 통해 신호가 전송되기 때문에 송신 다이버시티 이득을 얻게 된다.

$$C_{SIMO} = \log_2 (1 + \frac{E_s}{N_0} \| \mathbf{h} \|^2_F)$$ \hspace{1cm} (9)$$

식 (9)는 송신단 단일 안테나와 M_r개의 수신단 안테나 환경의 채널용량을 나타내고 있다. M_r개의 수신단 안테나를 가진 채널용량의 경우 다중의 수신단 안테나에 의해 배열이득(array gain)을 얻는다. 또한 송신단 안테나로부터 전송된 신호가 다중의 수신단 안테나로 수신됨에 따라 수신단 다이버시티 이득을 얻게 된다.

$$C_{MIMO} = \log_2 (1 + \frac{E_s}{M_tN_0} \lambda_i)$$ \hspace{1cm} (10)$$

식 (10)은 M_t개의 송신단 안테나와 M_r개의 수신단 안테나 환경의 채널용량을 나타내고 있다. 식10에서 λ_i는 무선 채널행렬 \mathbf{H}를 특이값 분해를 통해 얻을 수
있는 특이값의 i번째 원소를 나타내고 있으며, \(y_i \)는 waterfilling으로 알려진 송신단 전력제어 알고리즘을 통해 얻어지는 송신전력 제어계수이다.

그림 4는 송신단 및 수신단 안테나 수에 따른 채널용량을 나타내고 있다. 송신단 및 수신단에 단일 안테나를 사용한 SISO환경의 채널용량이 수신단 신흐대 잡음비가 증가함에 따라 가장 완만한 증가를 보이고 있으며 송신단 및 수신단 안테나수가 증가함에 따라 무선 채널용량이 증가함을 확인할 수 있으며 2×2 MIMO 환경, 1×2 SIMO 환경 및 2×1 MISO 환경의 순으로 채널용량 증대효과가 더함을 알 수 있다. 특별히 2×1 MISO 환경과 1×2 SIMO 환경의 채널용량을 비교해 보면 2×1 MISO 환경의 채널용량이 1×2 SIMO 환경의 채널용량에 비해 적은 것으로 나타나는데 이것은 송신단 다중 안테나 환경에서 각 안테나별 송신전력의 합이 전체 송신전력 제한을 넘을 수 없는 제약 때문이다. 그러나 MISO 환경의 경우 송신단에서 채널 상태정보를 알고 있는 상황이라면 송신단
전력제어를 통해 같은 안테나를 사용하는 SIMO 환경의 채널용량을 얻을 수 있으며 이러한 방법으로는 송신 최대송신비(Maximal Ratio Transmission)방식이 있다. 또한 MIMO 환경에서의 채널용량도 송신단에서 채널 상태정보를 알지 못할 경우에는 각 송신단 안테나의 송신전력의 비를 균등하게 전송하게 되며 이 경우 그림 4의 결과보다 성능이 열화 되는 채널용량 증대효과를 보인다.

2.3. 다중 사용자 다이버시티

무선 통신 시스템의 성능을 향상시키기 위해 무선 채널의 특성을 이해하고 이에 적합한 전송방식을 연구 개발하는 노력이 계속되어 왔다. 이러한 무선 링크의 성능개선을 위한 노력뿐만 아니라 다중접속 환경의 무선통신 환경에서 셀 관점의 처리량 증대를 위한 연구도 계속 진행되어 왔다. 그 중 다중 접속환경에서 데이터 전송을 위한 자원할당의 효율성 증대를 위한 무선자원 할당 알고리즘 개발은 가장 대표적으로 연구되고 있는 분야이다. 이러한 무선자원 할당 알고리즘의 적용은 효율적인 무선 자원을 할당함으로써 링크 관점의 전송효율의 증대뿐만 아니라 셀 관점의 다중접속 환경에서의 처리량 증대도 기대할 수 있다.

그림 5. 다중 사용자 다이버시티 기반 무선 자원할당
다중 사용자 환경의 통신 환경은 각기 다른 사용자는 각기 다른 무선 채널 환경을 가지고 있는 특성에 이용하여 가장 좋은 순서적 무선 채널을 갖는 사용자에게 무선 자원을 할당함으로서 링크관점의 전송효율을 증대시키고 다중접속 환경에서의 셀 처리량을 증대시킨다. 이러한 개념의 할당 알고리즘을 이용한 이득을 다중 사용자 다이버시티(multiuser diversity)[5]라 한다. 그림은 다중 사용자 다이버시티를 나타내고 있다.

사용자 A와 사용자 B는 각각 순서적 무선 채널 상태가 변화하고 있으며 이러한 다중 사용자 관점의 무선 채널 환경에서 순서적 무선 채널 환경이 좋은 사용자에게 무선자원을 할당하여 셀 관점의 처리량을 증대시킬 수 있게 된다. 다중 사용자 다이버시티 이득을 이용한 셀 관점의 처리량 증대 기술은 추가적인 설비 및 복잡한 전송기술의 개발 없이도 쉽게 셀 처리량 증대효과를 얻을 수 있으며 다중 접속 환경의 다양한 통신 시스템에 쉽게 적용이 가능하다. 또한 다중 빔 형성 기술 등의 다중접속 기반의 전송방식과 함께 적용하여 큰 셀 처리량 증대효과를 얻을 수 있다.

그러나 이러한 다중 사용자 다이버시티 이득을 얻기 위해서는 무선 자원 할당 알고리즘에 적용된 송신단에서 각 사용자의 순서적 채널 상태에 관한 정보를 얻어야 하며 피드백 양은 다중 사용자의 수가 증가함에 따라 일반적으로 선형적으로 비례하여 증가한다. 이는 다중접속 무선통신 환경에서 다중 사용자 다이버시티 이득을 얻기 위한 필수 불가결한 것으로 각 사용자의 순서적 무선 채널 상태정보를 위해 소요되는 상향링크 전송효율 감소와 다중 사용자 다이버시티 이득을 이용한 셀 처리량 증대는 상호 균형관계(trade-off)에 있다. 또한 각 다중 사용자들의 셀 내의 위치에 따라 각 사용자들이 갖는 송신신호의 경로감쇄가 다르기 때문에 균등한 조건 하에서 무선 자원을 다중 사용자들에게 할당하기 어려운 문제점도 있으며 다중 사용자의 수가 너무 많은 경우 무선 자원을 할당하기 위한 무선자원 할당자의 연산량 및 복잡도가 증가하게 되어 할당 알고리즘의 구현이 어려워지는 경우도 발생하게 된다.

다중 사용자 다이버시티 이득을 얻기 위해서는 각 다중 사용자에게 무선자원을 효율적으로 할당하는 알고리즘이 필요하다. 위의 그림 5와 같이 무선 자원을 각 사용자에게 할당할 경우 셀 관점의 처리량을 최대화 시킬 수 있으나 셀 관점이 아닌 링크관점의 각 사용자의 전송 QoS 만족을 보장하기 어렵게 된다. 일반
반적으로 전송 QoS는 전송률, 최대 패킷 전송지연, 각 사용자 별 무선자원 할당의 밴드수 등이 있다. 다중 접속 환경의 통신 시스템의 경우 각 사용자마다 전송 서비스의 종류 및 양이 다르기 때문에 각 사용자가 요구하는 전송 QoS 또한 다르게 된다. 이러한 각 사용자의 전송 QoS를 만족시키기 위해서는 다중 사용자 다이버시티 이득의 감소가 발생한다.

다중 접속 환경의 통신 시스템에서 셀 안쪽에 위치한 사용자와 셀 외곽에 위치한 사용자의 경로감쇄의 차이이는 셀 안쪽에 위치한 사용자의 거시적 채널상태가 더욱 좋은 확률이 컸기 때문에 셀 외곽에 위치하는 사용자의 할당 밴드수가 떨어지게 된다. 셀 사용자들의 무선자원 할당 밴드수가 떨어지게 되면 실시간 서비스를 필요로 하는 사용자는 링크의 연결 및 재결과 없는 서비스를 위해 수신 단 단말에 더 긴 큐(queue)가 필요하며 크기가 작고 전송지연에 취약한 형태의 서비스를 필요로 하는 사용자의 전송 QoS 만족에 취약하게 된다.

또한 각 사용자의 최저 전송률 만족을 위해 셀 외곽 및 셀 내 음영지역에 위치한 사용자에게 무선자원을 더 많이 할당할 경우 다른 사용자들의 무선자원 할당 밴드수는 상대적으로 감소하게 된다. 이는 전체적인 다중 사용자 다이버시티 이득의 감소로 셀 관점의 처리량의 감소를 가져온다. 무선자원을 효과적으로 할당하여 최대의 다중 사용자 다이버시티 이득을 얻기 위해서는 각 사용자의 QoS를 만족시키며 최소의 다중 사용자 다이버시티 이득을 확보시키는 것을 의미하게 되며 다중 사용자 다이버시티 이득과 각 사용자의 전송 QoS 보장은 상호 균형관계에 놓여있다.

다중 사용자 다이버시티 이득을 얻기 위해 셀 관점의 처리량을 최대화하기 위해서는 송신단에서 각 사용자의 채널 상태정보를 되먹임 받아 적합한 할당 알고리즘을 통해 무선자원을 할당할 사용자를 선정하고 선정한 사용자의 채널상태정보를 기반으로 하여 적합한 변조-부호화 준위(modulation-coding level)를 적응시키는 과정이 필요하다. 이러한 과정에서 이론적인 수치의 다중 사용자 다이버시티 이득을 얻기 위해서는 무선정확 적응과정에서 필요한 변조-부호화 준위를 조밀해야 한다.
2.4. 무선 자원할당 알고리즘

2.4.1. 순차적 할당 알고리즘

순차적 무선 자원할당 알고리즘은 무선 자원을 각 사용자에게 정해진 순차에 의해 할당하는 방식이다. 이러한 할당방식은 다중 접속 환경의 통신 시스템에 접속하여 전송을 요구하는 다중 사용자의 수가 K명이 있을 경우 무선자원을 각 사용자에게 균등하게 1/K 만큼 할당하는 방식으로 각 사용자는 정확히 1/K의 확률로 무선자원을 할당 받게 된다. 순차적 할당 알고리즘은 식 (11)과 같이 표현된다.

\[k^i(n) = k_i, \quad i = \text{mod}(n, K) \] (11)

식 (11)에서 K와 n은 각각 다중접속 환경의 무선 통신 시스템에서 무선자원을 할당 받기 위해 기다리고 있는 총 사용자의 수와 무선자원을 할당하는 타임 슬롯의 인덱스를 나타내며 mod는 modulo 연산을 의미한다. 순차적 할당 알고리즘은 각 사용자의 순서에 따른 채널상태를 고려하지 않고 각 사용자에게 무선자원을 할당함으로써 다중 사용자 다이버시티 이득을 얻지 못한다. 그러나 무선자원 할당 알고리즘 중 가장 단순한 구조를 띠고 있어 구현이 가장 간단하며 최대 패킷 전송시간 및 무선 자원할당 빈도수가 1/K로 고정되어 전송률을 제외한 나머지 전송 QoS 만족에 최적의 성능을 나타낸다. 또한 순차적 할당 알고리즘은 셀 내에 무선자원의 할당을 원하는 새로운 사용자가 추가된 경우 전체 사용자의 수를 K+1로 확장하고 새로 추가된 사용자의 순차를 가장 뒤에 추가함으로써 유동적으로 할당할 수 있으며 이와 반대의 경우인 기존의 무선자원을 할당 받던 사용자의 중단에도 전체 사용자 수를 K에서 K-1로 축소하고 중단된 사용자보다 순차적으로 뒤에 있던 사용자의 순차를 하나씩 앞당기면서 추가적인 할당 알고리즘의 변화 없이 무선자원의 할당이 가능하다.

이러한 순차적 할당 알고리즘은 각 사용자의 순서를 제달 상태에 관한 정보를 필요로 하지 않기 때문에 각 사용자의 상향링크 채널 상태정보 전송을 위한 별도의 펌프업을 필요로 하지 않는다. 또한 순차적 할당 알고리즘은 다중 사용자 다이버시티 이득을 얻지 않는 무선자원 할당 알고리즘의 크기 때문에 다른 무
선자원 할당 알고리즘의 다중 사용자 다이버시티 이득의 척도로써 사용될 수 있다. 일반적으로 순차적 할당 알고리즘에 비해 여타의 무선자원 할당 알고리즘은 각 사용자의 전송률을 향상시키는 반면 최대 패킷 전송지연성능 및 각 사용자의 무선 자원할당의 빈도수 형평성을 희생하게 된다. 순차적 무선자원 할당 알고리즘은 구조의 간단함과 구현의 용이함 및 별도의 되먹임이 필요하지 않다는 이점에 의해 현재 운용되고 있는 무선 통신 시스템에서 많이 사용되고 있다.

2.4.2. 최대 전송률 할당 알고리즘

최대 전송률 무선 자원할당 알고리즘은 송신단에서 각 사용자의 순서에 따라 채널 상태정보를 되먹임 받아 순서가 가장 좋은 사용자에게 무선자원을 할당하는 알고리즘이다. 최대 전송률 기반 무선자원 할당 알고리즘[6]은 순서적으로 채널 상태가 가장 좋은 사용자를 골라 무선자원을 할당하기 때문에 최대의 다중 사용자 다이버시티 이득을 얻는다. 또한 최대 전송률 기반 무선 자원할당 알고리즘은 셀 내에 사용자가 새로 추가되는 경우 및 셀 내에서 무선자원을 할당 받던 사용자가 무선자원 할당을 중단하는 경우에도 할당 알고리즘에 변화 없이 무선자원 할당 알고리즘의 적용이 가능하다. 최대 전송률 기반 무선자원 할당 알고리즘은 식 (12)과 같다.

\[
\hat{k}(n) = \arg \max_{k \in K} R_k(n)
\]

식 (12)에서 \(R_k(n) \)은 사용자 \(k \)의 무선자원 할당 슬롯 \(n \)에서 전송률을 나타낸다. 최대 전송률 기반 무선자원 할당 알고리즘은 셀 내의 사용자의 위치에 상이함에 의해 발생하는 경로감쇄 및 음영지역에 의한 거시적 페이딩 현상을 고려하지 않기 때문에 일반적으로 셀링 무선통신 시스템이 갖게 되는 near-far 문제를 갖게 된다. 이러한 문제점은 무선자원 할당 알고리즘에도 영향을 미치게 되는데 센터에 위치한 사용자는 센터에 위치한 사용자에 비해 보다 큰 경로감쇄를 겪게 되고 센터 음영지역에 위치할 확률도 높아지게 되어 수신신호의 평균전력이 낮아지게 된다. 이러한 현상으로 인해 센터에서 화이트로 치환하려는 사용자는 수신신호의 높은 평균전력으로 인해 센터의 화이트로 치환한 사용자에 비해 근사적
페이딩에 의해 순시적으로 채널 상태가 좋지 않더라도 무선자원을 할당 받을 수 있는 확률이 높아지게 된다. 결국 셀 안쪽에 위치한 사용자에게 대부분의 무선자원이 할당되어 상대적으로 셀 외곽에 위치한 사용자는 전송률의 형평성, 최대 패킷 전송지연 및 무선 자원할당 빈도수의 형평성의 전송 QoS 보장이 어려게 된다.

이러한 최대 전송률 기반의 무선자원 할당 알고리즘은 최대의 다중 사용자 다이버시티 이득을 얻기 때문에 앞서 살펴본 순차적 무선자원 할당 알고리즘과 더불어 무선자원 할당 알고리즘의 성능을 평가할 수 있는 척도로 사용된다.

2.4.3. 상대적 균등 할당 알고리즘

상대적 균등 무선 자원할당 알고리즘은 최대 전송률 할당 알고리즘에서 변형된 알고리즘으로 각 사용자의 순시적 채널 상태에 각 사용자들의 누적 전송량의 비율을 이용하여 무선자원을 할당함으로서 각 사용자의 전송률의 형평성을 고려한 할당 알고리즘이다. 상대적 균등 무선자원 할당 알고리즘[7]은 식 (13), (14)와 같다.

\[
k^*(n) = \arg \max_{k \in K} \frac{R_k(n)}{T_k(n)}
\]

\[
\begin{cases}
T_k(n+1) = (1 - \frac{1}{t_c})T_k(n) & k \neq k^* \\
T_k(n+1) = (1 - \frac{1}{t_c})T_k(n) + \frac{1}{t_c}R_k(n) & k = k^*
\end{cases}
\]

식 (13)에서 \(R_k(n) \)은 사용자 \(k \)의 타임 슬롯 \(n \)에서의 순시적 채널 상태를 나타내며 \(T_k(n) \)은 사용자 \(k \)의 타임 슬롯 \(n \)까지 누적 전송량을 나타낸다. 식 (14)는 각 사용자의 누적 전송량을 갱신하는 방법을 나타내고 있다. 타임 슬롯 \(n \)에서 무선자원을 할당 받지 못한 사용자는 식 (14)의 위의 식과 같이 갱신되며 무선 자원을 할당 받은 사용자는 식 (14)의 아래의 식과 같이 갱신된다. 각 사용자의
누적 전송량은 종래의 누적된 값과 현재의 값을 더하는 running-average의 형태를 취하고 있으며 충분한 긴 타임 슬롯 동안 누적 전송량이 갱신되면 각 사용자의 누적 전송량은 일정한 값으로 수렴하게 된다. 누적 전송량의 갱신에서 사용되는 \(t_c \)는 구속시간(constraint time)을 나타내며 이 구속시간의 길이가 짧을수록 누적 전송량이 갱신에서 현재 값에 의해 변화하는 누적 전송량의 변화폭이 크게 된다.

상대적 균등 무선자원 할당 알고리즘은 셀 내의 사용자들의 위치에 의해 발생하는 near-far 문제에 보다 유연하게 동작한다. 상대적 균등 무선자원 할당 알고리즘은 동작 초기에 각 사용자의 셀 내 위치에 의해 상대적으로 경로감쇠 및 음영지역에 위치할 확률이 적은 셀 안쪽 사용자에게 무선자원을 우선 할당하게 되며 누적 전송량의 갱신에 의해 초기 할당 받지 못한 셀 외곽에 위치한 사용자들에게 이후 무선자원 할당 시 보다 우선적으로 무선자원을 할당 받을 수 있는 확률을 높여주게 된다. 셀 안쪽에 위치한 사용자들의 전송률과 셀 외곽에 위치한 사용자들의 전송률의 형평을 이루게 되며 다시 셀 안쪽에 위치한 사용자들이 무선자원을 할당 받을 확률이 증가한 형태가 되어 셀 안쪽에 위치한 사용자들이 무선자원을 할당 받게 된다. 이 경우 구속시간의 길이를 짧게 하면 짧게 할수록 셀 외곽에 위치한 사용자들이 보다 빠르게 무선자원을 할당 받을 수 있는 확률이 증가하게 되어 각 사용자 간의 전송률 형평성이 빨리 만족되는 특성을 갖는다.

상대적 균등 무선자원 할당 알고리즘의 구속시간의 길이를 무한히 길게 설정할 경우 각 사용자들의 누적 전송량의 갱신이 아주 완만하게 되어 최대 전송률 무선자원 할당 알고리즘에 접근하게 된다. 위와 같이 셀 안쪽에 위치한 사용자들과 셀 외곽에 위치한 다중 사용자들의 간의 무선자원 할당이 교대로 일어나는 ping-pong 현상은 상대적 균등 무선자원 할당 알고리즘의 특징이다. 이렇게 셀 안쪽에 위치한 사용자들과 셀 외곽에 위치한 사용자들이 교대로 무선자원을 할당 받기 때문에 각 사용자들 사이에 전송률의 형평성이 최대 전송률 기반 무선자원 할당 알고리즘에 비해 좋아지게 된다. 또한 구속시간이 짧게 하여 각 사용자들의 누적 전송량이 갱신됨에 따라 상대적 균등 무선자원 할당 알고리즘 적용 시 셀 외곽에 위치한 사용자들의 무선자원 할당 반도수가 증가하게 되어 사용자들 간의 비교적 균등한 무선자원이 할당되게 된다. 이러한 현상은 구속시간의 길이
를 짧게 할수록 균등한 무선자원이 할당되는 특성이 있다. 구속길이의 길이를 충분히 짧게 할 경우 사용자들 간에 무선자원 할당이 빈번하게 되어 모든 사용자들의 평균 최대 패킷 전송지연이 줄어지게 된다.

상대적 균등 무선자원 할당 알고리즘의 전송 QoS 보장을 위해서는 각 사용자의 전송 QoS 요구조건들을 만족시키는 구속시간을 정하는 것이 가장 중요하다. 만약 각 사용자의 전송률, 최대 패킷 전송지연 및 무선자원 할당 빈도수에 대한 QoS 요구치가 다를 경우 각 사용자의 가중치를 적용하여 할당 알고리즘을 동작시킬 수도 있다. 이러한 가중치 적용 상대적 무선자원 할당 알고리즘은 식 (15), (16)과 같다.

\[k^*(n) = \arg \max_{k \in K} \left(\frac{w_k \cdot R_k(n)}{T_k(n)} \right) \tag{15} \]

\[
\begin{align*}
T_k(n+1) &= (1 - \frac{1}{t_k})T_k(n) \\
T_k(n+1) &= (1 - \frac{1}{t_k})T_k(n) + \frac{1}{t_k} w_k \cdot R_k(n) & k = k^* \\
\end{align*}
\tag{16}
\]

식 (15), (16)에서 \(w_k\)는 각 사용자의 가중치를 나타내며 모든 가중치의 합은 1을 만족해야 한다. 이러한 가중치 적용 상대적 무선자원 할당 알고리즘은 각 사용자의 전송 QoS를 보다 능동적으로 만족시킬 수 있으나 각 사용자들의 전송 QoS를 고려한 가중치를 구하기가 어렵다. 또한 각 사용자의 전송 QoS 중 한 가지 관점에 의해 가중치를 구하는 경우 여타의 다른 전송 QoS가 만족되지 못할 확률이 높아지게 되어 각 사용자의 가중치 값을 결정하는데 신중을 기해야 한다.

상대적 균등 무선자원 할당 알고리즘은 최대 전송률 기반 알고리즘에 비해 사용자 전송 QoS 만족에 강점을 가지고 있으나 각 사용자 전송 만족을 위해 순서적으로 가장 좋은 채널상을 가지는 사용자에게 무선자원을 할당하지 못하는 경우가 발생하게 되어 다중 사용자 다이버시티 이득이 감소하게 된다. 이
런 형상은 구속시간의 길이를 줄게 상정하는 경우 더욱 커지게 되어 셀 관점의 처리량이 감소하게 된다. 또한 셀 내에 무선자원을 할당 받기 위해 새로운 사용자와 추가될 경우 새로운 사용자에 의한 누적 전송량 값 및 누적 전송량 값의 수렴이 이루어지지 않으면서 할당 알고리즘이 정확히 동작하기 어렵고 이로 인해 반복하게 새로운 사용자가 추가되는 환경의 무선 통신 시스템에서는 추가적인 성능 저하가 일어나게 된다. 더욱이 가중치 적용 상대적 균등 무선자원 할당 알고리즘을 적용하는 경우에는 새로운 사용자의 추가 및 기존의 무선자원을 할당 받던 사용자의 할당중단에 의해 모든 사용자의 가중치 값을 다시 계산해야 하는 어려움이 발생하게 된다.
제3장 다중 빔 형성 기술

3.1. 빔 형성기술

이동 통신 시스템의 성능 및 용량은 셀 간 혹은 셀 내에서 발생되는 동일채널 간섭신호와 경로감쇄, 다중경로 페이딩(multi-path fading), 신호의 지연 및 도플러 스프레드 및 음영현상 등의 무선 전파채널 특성에 의해 근본적으로 제한된다. 따라서 현재의 통신 시스템은 이러한 성능 및 용량 제한 현상에 대한 보상기술로 전력제어, 채널코딩, RAKE 수신, 다이버시티 안테나, 셀의 섹터화, 주파수 분할, 대역확산 등의 기술을 응용하고 있다. 그러나 이동통신 서비스의 욕구가 점차 다양해지면서 그 수요도 크게 늘어남에 따라 기존의 기술만으로는 증대되는 고성능, 고용량의 필요를 충족시키기에는 점차 어려워질 것으로 판단된다. 이러한 간섭신호 및 채널 특성에 의한 성능 열화 현상에 대한 해결책으로 높게 평가되고 있는 것이 다중안테나를 이용한 빔 형성기술[8]이다.

기존의 두 개의 다이버시티 안테나를 사용하여 다중경로 신호를 결합하는 기술과는 달리 빔 형성기술은 배열 안테나와 고성능 디지털 신호처리 기술을 이용하여 RF 신호 환경의 변화에 따른 적응적 안테나 빔 패턴 제어에 의해 송신 및 수신 성능과 용량의 극대화를 가능하게 하는 신호처리 및 안테나 기술이다. 즉, 전 방향으로 방사 빔형을 형성하는 대신 해당 사용자에게만 지향성의 빔을 방사함으로써 섹터에서 활동하고 있는 전 가입자에게 신호간섭 효과를 최소화함으로써 통신품질과 시스템 채널용량을 높일 수 있는 기술이다.

3.2. 빔 형성기술을 위한 다중안테나의 구성과 기능

빔 형성기술은 안테나 배열 크기에 따라 기지국 또는 단말기에 위치할 수 있다. 빔 형성기술을 기지국(송신단)에서 사용할 경우, 상향 링크에서 적응적으로 원하는 방향으로부터 수신하고 하향 링크에서는 적응적으로 원하는 방향으로 송신하도록 하여 원하는 사용자에게 배열이득과 다이버시티 이득을 증가시키는 동시에 상향 링크에서 다른 방향으로부터 수신되는 간섭 신호나 하향 링크에서 다른 방향으로 송신되는 간섭 신호를 줄일 수 있다. 또한 다중 빔 형성기술을 사용할 경우 동일한 무선자원을 활용하여 더욱 많은 사용자를 수용할 수 있으며 그에 따라 시스템 용량을 늘릴 수 있다.
가. 안테나 배열: 다수의 안테나로 구성되어 원하는 안테나 빔 패턴을 생성하는 데, 안테나 수가 증가할수록 빔 패턴이 좁아져 성능이 증가하지만 시스템의 복잡도는 증가한다. 안테나 형태로는 균등 선형배열(uniform linear array), 균등 원형배열(uniform circular array) 등이 있다.

나. RF 송수신기: 배열 안테나 수와 동일하게 사용되며, 각 배열 안테나로부터 입력된 RF 입력출력 신호에 대한 Up/Down converter RF/IF 모듈로 구성 된다.

다. 빔 형성기: 원하는 사용자 방향으로의 빔 형성을 위한 방법으로 전환형 빔 형성(switched beamforming) 방식과 적응형 빔 형성(adaptive beamforming) 방식이 있다. 전환형 빔 형성 방식은 미리 몇 개의 방향에 대한 가중치 벡터를 설정하여 빔을 형성을 하는 방법이고, 적응형 빔 형성 방식은 원하는 사용자 신호 대 간섭 신호의 비를 최대화하도록 원하는 사용자의 위치에 따라서 가중치 벡터를 제어 갱신하는 방법이다. 빔 형성을 위해 가중치 벡터를 계산하기 위해 다양한 적응 알고리즘이 사용된다.

그림 6. 전환형 빔 형성기술 및 적응형 빔 형성기술의 빔 패턴
범을 형성하는 방법은 크게 두 가지로 구분할 수 있다. 첫번째는 DOA(Direction Of Arrival)를 추정하여 범 형성을 위한 조향벡터를 구하는 공간참조 범 형성 방식이다. 공간참조 범 형성 방식은 먼저 신호의 입사방향을 방향 탐지 알고리즘을 통해 찾는다. 일반적으로 사용되는 방향 탐지 알고리즘으로는 MUSIC(MUltiple SIgnal Classification), ESPRIT(Estimation of Signal Parameters via Rotational Invariance Techniques)등이 있다. 이러한 공간참조 범 형성 기술로는 지연함 범 형성기, null-steering 범 형성기, MVDR 범 형성기가 대표적이다. 두 번째는 송신단 및 수신단에서 상호 약정한 혼란신호를 이용하여 범 형성을 위한 조향벡터를 반복적으로 구하는 시간 참조 범 형성방식이다. 이러한 시간 참조 범 형성 방식은 MMSE 범 형성기[9][10], LMS 범 형성기[11], DSMI 범 형성기 및 RLS 범 형성기[12]가 대표적이다.

3.3. 기회적 범 형성기술

종래의 통신 시스템은 목적은 송신단과 수신단 사이의 무선링크의 안정성을 증대하는 방향으로 연구가 진행되어 왔다. 각 사용자들은 시간, 주파수, 공간 및 직교코드를 이용하여 구분하여 간섭이 없는 환경에서 수신단 신호와 간섭을 최대화 하는 기술이 주를 이루고 있었다. 새로운 통신시장의 요구에 맞추어 능률증대를 위해 다중안테나를 도입한 연구방향 또한 다이버시티 기술을 이용한 비트 오류율 감소와 멀티플렉싱을 이용한 활용률 증가 및 범 형성기술을 이용한 수신단 신호와 접수레벨 증가를 통한 최대 통달거리 증가를 목적으로 하고 있다.

그러나 최근 연구가 활발히 진행되고 있는 기회적 범 형성기술은 다중안테나 기반의 송신단에서 다중 범을 형성하여 다수의 사용자에게 신호를 전송하여 전송률을 향상시키고 각 사용자의 순서적 채널상태를 고려한 무선자원 할당을 통해 다중 사용자 다이버시티를 얻는 등의 무선채널의 폐쇄특성을 충분히 활용하여 성능을 향상시키는 셀 관점의 성능 향상에 관한 연구이다. 이러한 기회적 범 형성기술은 무선채널의 특성에 따라 다중 사용자 다이버시티 이득이 달라지는 특성을 가지고 있다. 각 사용자의 무선 채널환경이 빠르게 변하며 무선채널 이득의 변화폭이 클수록 다중 사용자의 수가 많을수록 다이버시티 이득
을 크게 얻게 된다. 그러나 상대적으로 무선채널 이득의 변화폭이 작거나 무선 채널의 시변특성이 좋지 않을 경우에는 다중 사용자 다이버시티를 얻기 못하는 단점을 가지고 있다.

이러한 문제점을 해결하기 위해 [13]에서 저자는 dumb 안테나를 이용한 범형성 장치를 통해 무선채널의 시변특성 및 무선채널 이득의 변화폭이 작은 환경에서 인공적으로 무선채널의 변화폭 및 시변특성을 변화시키어 다중 사용자 다이버시티를 많이 얻도록 하는 연구를 수행하였다.

dumb 안테나 기반의 범형성기술은 송신단에 추가적인 안테나를 장착하여 임의의 이득계수(gain coefficient)와 위상계수(phase coefficient)를 균일분포에 따라 생성하여 조향벡터로 사용한다. 생성한 불규칙 조향벡터(random steering vector)를 이용하여 불규칙 범을 형성한 후 각 사용자들로부터 불규칙 범에 대한 신호대 잡음비를 되먹임 받아 송신단에서 무선자원을 할당할 사용자를 선정한다. 이렇게 선정한 사용자에게 무선자원을 할당하여 신호를 전송하는 방식이다. dumb 안테나 기반의 범형성기술의 이득계수 및 위상계수는 식 (48)을 만족하여야 한다.

\[
\alpha(t) \in [0, 1], \quad \theta(t) \in (-\pi, \pi) \tag{17}
\]

그림 7. Dumb 안테나 기반 범형성기

\[
\alpha(t) = \sqrt{1 - \alpha(t)e^{i\theta(t)}}
\]

\[
\sqrt{x(t)}
\]

\[
\text{user } k
\]

\[
h_{k}(t)
\]

\[
h_{2k}(t)
\]
식 (17)에서 이득계수 \(a \)가 0 또는 1로 근접하게 되면 단일 안테나를 사용하던 종래의 기술로 근접하게 되어 dumb 안테나를 사용한 무선채널 시변특성 변화 성능이 감소하게 된다. 또한 이득계수가 0.5로 고정시키는 경우 송신단 안테나 별 등전력 송신기술로 근접하게 되며 다중 사용자 다이버시티를 획득하기 위한 자유도(degree of freedom) 감소를 초래하게 되어 역시 시변특성 변화성능이 감소하게 된다. dumb 안테나 기반의 빔 형성기는 그림 8과 같이 도식화 된다.

이러한 dumb 안테나 기반의 빔 형성기술은 다중 사용자의 수가 증가함에 따라 불규칙 조향벡터에 의한 불규칙 빔에 적합한 사용자가 존재할 확률이 증가하게 되어 다중 사용자 다이버시티 이득을 더 많이 얻게 된다. 그림 8의 블록도를 이용한 수신단 수신신호는 식 (18)과 같이 표현된다.

\[
y_k(t) = (\sqrt{\alpha(t)}h_{ik}(t) + \sqrt{1-\alpha(t)}h_{ik}(t)e^{j\theta(t)}) \cdot x_k(t) + n_k(t)
\]
(18)

식 (18)의 수신신호는 일반적인 빔 형성기술의 수신단 수신신호와 유사한 구조를 가지고 있다. dumb 안테나 기반의 빔 형성기술은 송신단에 dumb 안테나를 장착함으로써 무선채널의 이득의 폭 및 시변특성이 좋지 않는 상황에서 다중 사용자 다이버시티를 효과적으로 얻기 위한 기술로 단일 사용자에게 신호를 전송하기 때문에 멀티플렉싱 이득을 얻을 수 없고 송신단 안테나의 수를 증가함에 따라 자유도가 증가하게 되어 다중 사용자 다이버시티를 얻기 위해 필요한 다중 사용자의 수가 증가하게 된다.

3.4. 불규칙 빔 형성기술(random beamforming)

불규칙 빔 형성기술(random beamforming)은 기회적 빔 형성기술에서 발전된 것으로 다중 빔 형성을 통해 다중 사용자에게 동시에 신호를 전송하기 위해 간섭이 적은 불규칙 조향행렬을 순차적으로 생성하는 방법이다. 다중 사용자에게 신호를 전송하기 때문에 멀티플렉싱 이득과 각 빔에 대한 적합한 사용자 선정을 통해 다중 사용자 다이버시티를 얻을 수 있다. [14][15]에서 저자는 MUDAM(MUltiuser Diversity And Multiplexing)이라는 기술을 제안했다. MUDAM은 송신단 다중 안테나와 수신단 단일 안테나를 가정한 MISO 채널 환
MUDAM 빔 형성기술 사용자 선정순차

1. 시작
2. 첫 번째 불규칙 빔 \(w_1 \) 형성
3. 전체 사용자 SNR's 되먹임
4. 최대 신호대 잡음비를 갖는 첫 번째 사용자를 선정
5. 선정된 첫 번째 사용자의 CSI 되먹임
6. 허용가능 간섭을 고려하여 두 번째 불규칙 빔 \(w_2 \) 형성
7. 선정된 첫 번째 사용자를 제외한 모든 사용자의 SNR 되먹임
8. \(C_M > C? \)
 - 아니오: 단일 빔 형성
 - 예: 다중 빔 형성

그림 8. MUDAM 빔 형성기술 사용자 선정순차

MUDAM 빔 형성기술은 다중 안테나를 장착한 송신단에서 불규칙 조향벡터 \(w_1 \)을 생성한다. 생성한 불규칙 조향벡터 \(w_1 \)을 이용하여 불규칙 빔을 형성한 후
모든 사용자들로부터 불규칙 빔에 대한 수신단 신호대 잡음비를 되먹임 받는다. 송신단 무선자원 할당자는 수신된 수신단 신호대 잡음비를 기반으로 최대 전송률 기반 할당 알고리즘을 적용하여 첫 번째 불규칙 빔을 이용하여 신호를 전송할 사용자를 선정한다. 송신단은 첫 번째 불규칙 빔에 선정된 사용자에게 채널 상태정보를 되먹임 받기 위해 제어신호를 전송하고 첫 번째 불규칙 빔에 선정된 사용자는 채널 상태정보를 수신단으로 되먹임하게 된다. 식 (19)는 첫 번째 불규칙 빔에 사용자를 선정하는 무선자원 할당 알고리즘을 설명하고 있다. \(y_1 \)은 전체 \(K \)명의 다중 사용자들의 수신단 신호대 잡음비 중에서 가장 높은 값을 가지는 사용자의 수신단 신호대 잡음비를 나타낸다.

\[
\gamma_1 = \max_{k \in \{1, 2, \ldots, K\}} \left\{ \frac{|h_k^H w_1|^2}{\sigma_k^2} \right\}
\]
(19)

첫 번째 선정과정을 통해 첫 번째 불규칙 빔에 대한 과정을 마친 후 송신단은 두 번째 불규칙 빔 형성을 위한 조향벡터 \(w_2 \)를 생성한다. 이때 두 번째 불규칙 빔을 형성하기 위한 조향벡터 \(w_2 \)는 아래의 식 (20)의 준 직교조건을 만족하여야 한다.

\[
h_k^H \cdot w_2 = \varepsilon
\]
(20)

식 (20)에서 \(\varepsilon \)은 두 번째 불규칙 빔이 첫 번째 불규칙 빔에 주는 간섭의 향을 나타내는 간섭계수이고 첫 번째 불규칙 빔에 선정된 사용자의 무선채널의 채널 상태정보와 두 번째 불규칙 빔의 조향벡터의 내적을 의미한다. 일반적으로 간섭계수는 아주 작은 값으로 설정하여 두 번째 불규칙 빔 형성에 의한 첫 번째 불규칙 빔의 간섭이 무시될 수 있도록 상정한다. 이렇게 생성한 두 번째 불규칙 조향벡터를 이용하여 빔을 형성한 후 첫 번째 불규칙 빔에 선정된 사용자를 제외한 나머지 다중 사용자들로부터 신호대 간섭잡음비를 되먹임 받는다.

\[
\gamma_1 = \frac{1}{2} |h_k^H w_1|^2 + \frac{1}{2} |\varepsilon|^2
\]
(21)
식 (21), (22)는 두 번째 불규칙 빔을 형성한 후 각각 첫 번째 불규칙 빔과 두 번째 불규칙 빔에 선정된 사용자들의 신호대 신호대 간섭잡음비를 나타낸다. 식 (21)은 첫 번째 불규칙 빔을 형성하고 두 번째 불규칙 조향벡터를 생성하는 과정에서 간섭계수 만큼의 간섭을 허용하게 되므로 식 (22)의 신호대 갑음비가 아닌 신호대 간섭잡음비로 변하게 된다. 식 (22)는 두 번째 선정된 사용자의 신호대 신호대 간섭잡음비로 첫 번째 사용자의 불규칙 빔에 의한 간섭을 계산한다.

MUDAM 기술은 MISO 환경에서 다중 불규칙 빔을 형성하여 다중 사용자에게 신호를 동시에 전송하고 각 불규칙 빔에 적합한 사용자를 선정하는 과정을 통해 다중 사용자 다이버시티를 얻는다. 그러나 다중 빔을 형성하기 때문에 각 빔에 의한 배열이득을 얻지 못하며 순차적인 벡터 형성과정을 거쳐 다중 빔을 형성하는 방식으로 인해 채널이 빠르게 시변하는 환경에서 간섭계수의 오차가 점점 증가하게 되어 멀티플렉싱 이득이 감소하게 된다.

3.5. Zero forcing 빔 형성기술

그림 9. Zero forcing 빔 형성기술 준 직교 사용자 선정순차

그림 9에서 T_i는 사용자 선정의 검색공간(search space), i는 사용자 선정의 순번, S는 선정된 사용자들의 집합을 나타내며 α는 간섭계수이다. Zero forcing 빔 형성기술은 준 직교 사용자 선정절차를 위해 초기화 과정을 통해 사용자 선정 검색 공간, 사용자 선정순번, 선정된 사용자들의 집합을 초기화한 후 기존 사용자의 체널벡터의 검색공간에 포함되어 있는 다중 사용자의 체널벡터의 정
사영 방법을 이용하여 직교정도를 계산한다.

검색 공간에 포함되는 다중 사용자의 직교정도 중에서 가장 큰 값을 가지는 사용자를 순차적으로 선정하여 선정된 사용자의 집합에 포함 시킨다. 사용자 선정 인덱스가 송신단 안테나 수 M_t보다 작은 경우 위의 수행과정을 반복하며 송신단 안테나수와 같은 경우 준 직교 사용자 선정절차를 마무리 한다. 각 사용자 선정과정에서 새로 선정된 사용자 및 새로 선정된 사용자와의 간섭량이 기 설정한 간섭계수보다 큰 사용자들은 검색공간에서 배제시킨다. 이러한 순차를 거쳐 선정된 사용자들의 채널상태정보를 이용하여 생성한 각 사용자들의 조향벡터는 식 (23)을 만족한다.

$$h_k \cdot w_j = 0 \quad \text{for} \ j \neq k$$

다양한 방법을 이용하여 식 (23)의 성질을 만족하는 조향행렬을 구할 수 있다. 그중 많이 활용되는 기술은 특이값 분해(singular value decomposition)과 의사 역행렬(pseudo-inverse) 방법을 이용한 Zero forcing이다. 특이값 분해기술을 이용한 다중 조향행렬을 구하는 방법은 선정된 사용자들의 채널벡터를 행렬의 형태로 확장한 다음 특이값 분해를 수행하여 우 정칙행렬을 조향행렬로 사용하는 것이다. 특이값 분해의 결과는 아래의 식 (24)와 같이 표현된다.

$$H(S) = U(S) \Sigma(S) V^H(S)$$

식 (24)에서 특이값 분해를 통해 얻어지는 U, Σ, V행렬은 각각 좌 정칙행렬, 특이값 행렬, 우 정칙행렬을 의미한다. 이렇게 얻어진 우 정칙행렬과 특이값 행렬을 이용하여 다중 밴 형성을 위한 조향행렬 및 waterfilling 기술을 이용한 송시단 전력제어를 수행할 수 있다.

의사 역행렬 방법인 Zero forcing 기술은 선정된 사용자들의 채널벡터를 행렬의 형태로 확장한 다음 의사 역행렬을 구하여 그것을 조향행렬로 사용하는 것이다. 의사 역행렬 방법인 Zero forcing 기술로 얻어진 조향행렬은 식 (25)과 같이 표현된다.
식 (25)을 통해 얻어진 조향행렬을 이용하여 송신단 전력제어를 할 경우 특이값 분해를 통한 방법에서와 같은 특이값 행렬이 필요하게 된다. 이러한 특이값 행렬은 식 (26)에 의해 행렬의 원소들을 계산할 수 있다.

\[
W(S) = H(S)^+ = H(S)^*(H(S)H(S)^*)^{-1}
\] (25)

식 (25)과 식 (26)을 통해 각각 얻은 조향행렬과 특이값 행렬을 이용하여 다중빔을 형성할 경우의 용량은 전체 다중 사용자의 수가 커짐에 따라 DPC(Dirty Paper Coding) 성능에 근접할 수 있다.

\[
\gamma_i = 1/\|w_i\|^2 = 1/[(H(S)H(S)^*)^{-1}]
\] (26)

Zero forcing 빔 형성기술을 이용한 다중빔 형성기술은 준 직교 사용자 선정 과정을 통해 각 빔에 할당되는 사용자를 간섭이 없이 선정할 수 있기 때문에 다중 사용자의 수가 증가함에 따라 DPC의 성능에 근접하는 우수한 성능을 가지고 있다. 그러나 송신단에서 다중 사용자의 모든 채널 상태정보를 알아야 하는 어려움과 준 직교 사용자 선정과정의 연산량이 크다는 단점이 가지고 있다. 또한 조향행렬을 구하기 위해 특이값 분해 또는 의사 역행렬 방법을 이용해야 함으로 구현의 어려움을 가지고 있다.

3.6. 정칙행렬 기반 전송률 제어기술

정칙행렬 기반 전송률 제어기술(PU2RC: Per User Unitary Rate Control)[18]은 송신단 및 수신단에서 상호 약정한 정칙행렬 셋을 이용하여 다중 사용자의 채널에 동시에 신호를 전송하는 기술로 멀티플렉싱 이득과 다중 사용자 선정과정에서 다중 사용자 다이버시티 이득을 얻는다. 정칙행렬 기반 전송률 제어기술은 기존의 다중빔 형성을 통한 멀티플렉싱 이득과 다중 사용자 다이버시티를 얻기 위한 기술들의 가장 큰 단점이었던 구현이 어려울 정도의 채널 상태 정보량을 효과적으로 줄이는 방법에 착안한 기술이다. 정칙행렬 기반 전송률 제어기술을 이용하여 멀티플렉싱 이득과 다중 사용자 다이버시티를 얻기 위한 사용자 선정 순서는 그림 10에 나타나 있다.

30
정칙행렬을 이용한 사전 부호화 신호 전송

모든 사용자의 되먹임
(정칙행렬 색인, 조항벡터 색인, 해당 조항벡터에 의한 신호대 잡음비)

되먹임을 기반으로 그룹설정

그룹 간 합용량 비교에 의한 정칙행렬(그룹) 선택

그림 10. 정칙행렬 기반 전송률 제어기술 사용자 선정순차

정칙행렬 기반 전송률 제어기술은 송신단에서 송신신호를 순차적으로 기약
정된 정칙행렬 셋들을 이용하여 사전코딩(precoding)한 후 다중 사용자에게 전송한다. 각 다중 사용자들은 각 정칙행렬에 대해 수신단 신호대 잡음비를 계산하여 가장 값이 큰 정칙행렬의 인덱스, 선정된 정칙행렬의 조항벡터 인덱스 및 해당 신호대 잡음비를 송신단으로 되먹임 한다.

송신단은 모든 사용자로부터 받은 되먹임을 이용하여 같은 정칙행렬 인덱스 를 선택한 다중 사용자를 집합화(grouping) 한다. 송신단은 집합화 과정을 통해 나누어진 사용자 집합들의 합용량을 계산하거 가장 합용량이 큰 정칙행렬 집합과 계산에 의해 선택된 정칙행렬 집합에 속해있는 사용자들의 조합을 통해 사전코딩에 할당 할 사용자를 선정하게 된다.
송신단은 선정된 사용자들에게 선정된 정칙행렬과 정칙행렬을 이루고 있는 각 조향벡터들을 이용하여 선정된 각 사용자들에 사전코딩기술을 이용하여 신호를 전송한다. 정칙행렬 기반 전송률 제어기술은 송신단 및 수신단 상호간에 기 약정된 정칙행렬 셋을 이용하여 다중 사용자의 채널상태정보를 되먹임 받는 대신 각 다중 사용자의 해당하는 정직행렬의 인덱스, 해당 정직행렬의 조향벡터 인덱스 및 수신단 신호대 잡음비를 되먹임 받는 기술로 기존의 다른 다중 빔 형성기술에 비해 되먹임 양을 줄일 수 있다. 그러나 정직행렬 기반 전송률 제어 기술은 정직행렬 셋의 크기가 커지면 커질수록 동일한 수의 다중 사용자 환경에서 동일 정직행렬 사용자 집합의 수가 증가함에 따라 멀티플렉싱 이득 및 다중 사용자 다이버시티가 감소하는 특징을 가지고 있다. 또한 종래의 다중 빔 형성기술에 비해 수신단에서 모든 정직행렬 셋을 가지고 이를 기반으로 수신신호에 해당하는 정직행렬의 인덱스, 조향벡터의 인덱스 및 신호대 잡음비를 되먹임 해야 함으로 수신단의 복잡도가 증가하게 된다.
제4장 결합 직교 다중 빔 형성기술

기회적 빔 형성기술은 불규칙 조향벡터를 생성하여 무선 채널상태가 적합한 사용자를 선정하고 신호를 전송함으로 다중 사용자 다이버시티를 얻었다. 그러나 적은 다중 사용자수에서는 다중 사용자 다이버시티를 충분히 얻지 못하며 송신단 안테나 수가 증가함수록 자유도가 증가하게 되어 무선 채널상태가 적합한 사용자를 찾을 확률이 감소하는 문제를 갖고 있었다.

불규칙 빔 형성기술은 첫 번째 불규칙 조향벡터를 생성한 후 그에 각 사용자들에게 수신단 신호대 잡음비를 되먹임 받아 첫 번째 불규칙 빔에 대한 사용자를 선정한다. 선정된 사용자의 채널상태정보를 다시 되먹임 받아 첫 번째 불규칙 빔의 조향벡터를 기준으로 기정한 간섭계수를 넘지 않는 두 번째 조향벡터를 생성한다. 생성한 두 번째 조향벡터를 이용하여 빔을 형성한 후 다중 사용자들에게 다시 수신단 신호대 집합비를 되먹임받는다. 송신단 안테나 수 M만큼의 사용자 선정을 위해 순차적으로 위의 과정을 반복하게 된다. 불규칙 빔 형성기술은 한정된 간섭만을 허용하며 다중 빔을 생성하기 때문에 상대적으로 높은 신호대 간섭잡음비 갖게 되며 그 결과로 큰 멀티플렉싱 이득을 얻을 수 있다. 그러나 다중 사용자를 선정하는 과정 중에 모든 다중 사용자의 무선 채널상태가 변하지 않아야 하는 가정이 필요하며 실제 시변하는 무선채널 환경에서는 순차적으로 빔을 형성해 나가는 과정에서 각 빔들에 의한 간섭과정 현상이 일어난다. 또한 순차적으로 형성하는 방식에서 계속적인 다중 사용자의 되먹임을 받아야 하므로 상향링크에서 전송효율이 급격히 저하되게 된다.

Zero forcing 빔 형성기술은 다중 사용자의 모든 채널상태정보를 송신단에서 알고 있다는 가정으로 각 사용자들을 준 직교 사용자 선정과정을 통해 사용자들을 선정하고 선정한 사용자들의 채널상태정보를 의사 역행렬 방식 또는 특이값 분해과정을 통해 조향행렬을 생성한다. Zero forcing 빔 형성기술은 큰 멀티플렉싱 이득과 다중 사용자 다이버시티를 얻는 성능을 나타낸다. 그러나 송신단에서 모든 다중 사용자의 채널상태정보를 알기 어렵고 모든 다중 사용자의 채널상태정보를 송신단으로 되먹임 할 경우 역시 상향링크 전송효율이 급격히 저하되게 된다.
정칙행렬 기반 전송률 제어기술은 송신단 및 수신단 상호간에 기약정된 정
칙행렬 샌을 이용하여 사전코딩기술로 신호를 전송하는 기술이다. 정칙행렬기반
전송률 제어기술은 높은 멀티플렉스성 이득과 다중 사용자 다이버시티를 얻으며
다중 사용자들의 채널임 양이 감소하는 특징을 가지고 있다. 그러나 정칙행렬
셋의 크기와 다중 사용자 수의 관계에 따라 성능의 변화폭이 크며 모든 다중사
용자가 정칙행렬 샌을 가지고 수신단 신호대 간섭잡음비를 계산하여야 하기 때
문에 수신단에 복잡도가 증가하게 된다.

다중 빔 형성기술을 이용하여 멀티플렉스성 이득과 다중 사용자 다이버시티를
효과적으로 얻기 위해서는 다중 빔 형성을 위해 필요한 조향행렬을 낮은 복잡
도와 비순차적인 방법으로 구해야 하며 사용자 선정을 위해 필요한 다중 사용
자의 수신단 신호대 잡음비 또는 신호대 간섭잡음비의 되먹임량을 줄여야 한다.

4.1. Gram-Schmidt 직교화 방법을 이용한 조향행렬 생성

본 논문에서 제안한 결합 빔 형성기술은 종래의 배열이득을 얻기 위해 단일
사용자에게 빔을 형성하던 기술과 다중 사용자에게 신호를 전송하여 멀티플렉
성 이득 및 효과적인 사용자 선정을 통해 다중 사용자 다이버시티를 얻는 기술
을 결합한 것이다. 종래의 빔 형성기술의 기준 사용자 허벌의 채널상태정보를
이용하여 Gram Schmdit직교화 과정[19]을 통해 다중 직교 빔 형성을 위한 직
교 조향행렬을 반복적으로 구하는 방식이다. 수신단 안테나수가 M개인 경우
Gram Schmdit 직교화 방법을 사용하기 위해서는 1개의 기준벡터와 M-1개의
선형독립벡터(linear independent vector)가 필요하다. M-1개의 선형독립벡터는
식 (27)과 같이 구해진다.

\[\mathbf{v}_i = [w_1, w_2, \ldots, w_i + \alpha, \ldots, w_M]^T \]

식 (27)에서 \(w_i \)는 기준벡터 \(v_1 \)의 i번째 원소를 의미하며 선형독립벡터 \(v_i \)는 기
준벡터의 i번째 원소에 임의의 상수 \(\alpha \)를 더해줌으로 구할 수 있다. 구해진 M-1
개의 선형독립벡터와 1개의 기준벡터를 이용하여 M개의 조향벡터를 구하는 방
법은 식 (28), (29)과 같다.
$$u_j = v_j - \sum_{j=1}^{i-1} \frac{u_j^H v_i}{u_i^H u_j} \cdot v_j$$ \hspace{1cm} (28)$$

$$w_j = u_j / \|u_j\|$$ \hspace{1cm} (29)

Gram Schmid 직교화는 기준벡터를 기준으로 M_t-1개의 선형 독립벡터를 생성하여 순차적으로 기 생성된 직교벡터에 정사영 시켜 동방향 성분과 직교방향 성분으로 구분하여 동방향 성분을 배제한 직교방향 성분의 벡터를 구하는 방법이다.

$$w_i^H \cdot w_j = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$$ \hspace{1cm} (30)

Gram Schmid 직교화를 통해 얻어진 M_t개의 직교조향벡터들은 식 (30)의 내적의 직교성질을 만족한다. 생성한 직교조향벡터를 이용하여 직교조향행렬을 구하면 식 (31)과 같다.

$$W= [w_1, w_2, \ldots, w_{M_t}]$$ \hspace{1cm} (31)

식 (31)의 직교조향행렬을 이용하여 결합 직교 다중 밑을 형성할 경우 기준 사용자와 k번째 사용자의 수신신호는 식 (32), (33)와 같이 표현된다.

$$y_{\text{ref}}(t) = h_{\text{ref}} W d(t) + n_{\text{ref}}(t)$$
$$= h_{\text{ref}} w_{1} d_{1}(t) + \ldots + h_{\text{ref}} w_{M_t} d_{M_t}(t) + n_{\text{ref}}(t)$$
$$= h_{\text{ref}} w d_{1}(t) + n_{\text{ref}}(t)$$
$$= \|h_{\text{ref}}\|^2 d_{1}(t) + n_{\text{ref}}(t)$$ \hspace{1cm} (32)
\[y_k(t) = h_k Wd(t) + n_k(t) = h_k w_j d_j(t) + \cdots + h_k w_M d_M(t) + n_k(t) \]

식 (32)는 기준 사용자의 수신단 수신신호를 나타내고 있다. 기준 사용자의 채널 상태 정보를 기준 벡터로 설정하여 직교 조향 행렬을 생성하였음으로 기준 사용자의 수신신호는 간섭이 없는 일반적인 빔 형성 기술을 사용하였을 때의 수신 신호와 같은 형태이다. 식 (33)은 기준 사용자를 제외한 나머지 다중 사용자의 수신단 수신신호를 나타내고 있다. 다중 사용자는 수신한 수신신호 기준 사용자의 신호인 첫 번째 항과 잡음을 나타내는 마지막 항을 제외한 수신단 신호 대 간섭잡음비를 계산하여야 한다. 다중 사용자의 각 직교 빔 별 수신단 신호 대 간섭잡음비는 식 (34)와 같다.

\[\text{SINR}_{k,m} = \frac{|h_k w_{m1}|^2}{\sigma_k^2 + \sum_{j \neq k}|h_k w_{mj}|^2} \]

식 (34)는 \(k \)번째 다중 사용자의 \(m \)번째 직교 빔에 대한 수신단 신호 대 간섭잡음비를 나타내고 있으며 \(m = 1 \)인 경우의 수신단 신호 대 잡음비는 이미 기준 사용자에게 할당되어진 빔에 관한 것으로 계산하지 않는다.

4.2. 직교 조향행렬을 이용한 사용자 선정방법

앞 절에서 효과적인 조향행렬을 구하기 위해 Gram Schmdit 직교화 방법을 이용한 직교 조향행렬을 구하는 방법을 제안하였다. Gram Schmdit 직교화 방법을 통해 생성한 직교 조향행렬을 이용하여 다중 빔을 형성한 후 각 다중 빔을 이용하여 다중 사용자에게 신호를 전송하기 위해서는 다중 사용자를 선정하는 알고리즘이 필요하다. 결합 직교 빔 형성 기술의 다중 사용자 선정 알고리즘은 그림 11에 나타나 있다.
결합 직교 빔 형성을 위해 다중 사용자를 선정하는 순차는 기준 사용자를 선정으로 시작된다. 기준 사용자의 선정은 다양한 자원할당 알고리즘을 통해 선정 가능하며 최대 전송률 또는 상대적 균등할당 알고리즘을 통해 선정할 경우 기준 사용자 선정을 통해 다중 사용자 다이버시티를 얻을 수 있다. 기준 사용자 선정과정을 마친 후 기준 사용자의 채널상태정보를 획득하여 Gram Schmdit직

그림 11. 결합 직교 다중 빔 형성기술의 사용자 선정순차
교화 과정을 수행한다. 기준 사용자의 채널상태정보를 기반으로 기준 사용자의 기준 조향벡터를 생성한다. 생성한 기준 조향벡터를 이용하여 M_t-1개의 선형 독립벡터를 생성하고 Gram Schmdit 직교화 과정을 수행한다. Gram Schmdit 직교화 과정을 통해 계산된 직교 조향행렬을 이용하여 다중 범을 형성한다. 다중 사용자들은 각 범별 수신단 신호대 간섭잠음비를 계산하여 그 정보를 송신단으로 되먹임 한다. 이때 다양한 방법을 사용하면 되먹임의 양을 줄일 수도 있으며 수신단 신호대 간섭잠음비와 함께 해당 범에 관한 채널상태정보를 되먹임 할 수도 있다. 채널상태정보와 같이 되먹임하는 경우 형성된 다중 범을 이용하여 waterfilling 등의 송신단 전력제어 기술을 활용한 전력제어 이득을 얻을 수 있다. 송신단은 다중 사용자들로부터 수신한 각 범별 수신단 신호대 간섭잠음비를 이용하여 다중 직교범에 대한 사용자를 선정한다. 이 경우 다양한 자원 할당 알고리즘을 적용하여 이를 통해 멀티플렉싱 이득과 다중사용자 다이버시티를 얻게 된다.

다중 범에 사용자 선정을 마친 후 선정된 다중 사용자들의 할당량과 기준 사용자에게 배열이득을 주는 단일의 용량을 계산하여 비교한다. 단일 범을 형성한 경우의 용량이 더 큰 경우 단일 범을 형성하여 신호를 전송하게 되고 다중 사용자들의 할당량이 더 큰 경우 결합 직교 다중 범을 형성하여 다중 사용자들에게 신호를 전송하게 된다. 결합 직교 범 형성기술은 첫 번째 기준 범을 기준 사용자 선정과정을 통해 고정적으로 할당하기 때문에 다중 사용자의 수가 적은 환경에서 다중 범만을 형성하는 기존의 기술에 비해 보다 안정적으로 동작하는 장점을 가지고 있으며 직교 다중 범을 형성하기 위해 종래의 순차적인 과정을 수행하지 않고 한번에 직교 조향행렬을 구해내기 때문에 시변하는 무선 채널환경에 보다 효과적으로 구현이 가능하다.

4.3. 되먹임량 감소를 위한 기술

결합 직교 다중 범 형성기술은 다중 사용자에게 신호를 전송함으로 멀티플렉싱 이득을 얻고 각 다중 범에 적합한 사용자를 선정함으로 다중 사용자 다이버시티를 얻는다. 그러나 이러한 다중 사용자 다이버시티를 얻기 위해서는 다중 사용자의 각 범별 수신단 신호대 간섭잠음비를 되먹임 받아야 한다. 전체 되먹
임양은 신호대 간섭잡음비를 기준으로 송신단 안테나 수 \(M\)와 총 다중 사용자 수 \(K\)의 곱으로 정해진다. 송신단 4개의 안테나의 MIMO 환경에서 다중 사용자 수가 40명이라고 가정하고 각 범위 수신단 신호대 간섭잡음비를 16bit로 전송할 경우 필요한 되먹임의 양은 2560bits 이 된다. 이러한 양은 다중 사용자 수가 증가, 송신단 안테나 수 \(M\), 총 사용자 수가 증가 및 수신단 신호대 간섭잡음비의 양 자화 수준에 따라 선형적으로 증가하게 되며 상향링크의 전송효율의 치명적인 감소를 일으킨다.

이러한 되먹임량 감소를 위한 연구가 지속적으로 진행되어 왔다. [20]에서 저자는 문턱값(threshold value)기반의 제한적 되먹임 방법을 제안하였다. 이것은 다중 사용자들이 각 범위 수신단 신호대 간섭잡음비를 되먹임 할 때 이미 정해져 있는 문턱값을 넘을 경우에만 되먹임을 수행하는 기술이다. 이러한 문턱값 기반의 되먹임량 감소 기술은 문턱값을 조정하여 되먹임의 량을 통계적으로 조절할 수 있는 장점을 갖고 있는 반면에 효율적인 문턱값을 계산하는 과정이 어렵다. 문턱값을 너무 낮게 잡는 경우 되먹임량의 감소가 적어 효용성이 떨어지게 되며 문턱값을 너무 크게 잡는 경우 되먹임량이 급격히 감소하게 되어 다중 범 형성기술의 멀티플렉싱 이득과 다중 사용자 다이버시티가 급격히 감소하게 된다.

IEEE 802.16 d/e[21]에서는 사용자의 채널상태정보를 획득하기 위해 미드엠블(midamble)을 사용한다. 이러한 미드엠블은 하향링크 채널과 상향링크 채널의 대칭성을 이용한 것으로 경쟁기반 되먹임을 수행하여 되먹임량을 줄인다.
제5장 전산 모의실험

결합 직교 다중 빔 형성기술의 합용량 증대성능을 평가하기 위해 전산 모의 실험을 수행하였다. 송신단 안테나 수는 2, 3개의 MISO 환경을 가정하였으며 빔 형성을 위해 일반적인 지연합 빔 형성기를 사용하였다. 각 다중 사용자의 무선 채널은 독립적이며 각 사용자의 무선채널의 시간특성은 블록 감쇄(block fading)를 가정하였다. 전산 모의실험은 네 측면의 결합 직교 다중 빔 형성기술의 성능을 평가하였다.

첫 번째로 종래의 불규칙 다중 빔 형성기술과 합용량 증대성능을 비교하였으며 두 번째로 기준 사용자의 지정을 송신단에서 순시적 무선 채널환경이 가장 좋은 사용자를 선정한 경우와 송신단에서 기준 사용자 선정에 관한 정보 없이 선정하는 경우의 성능변화를 실험하였다. 세 번째로 되막임량의 변화에 따른 결합 직교 다중 빔 형성기술의 합용량 증대성능의 변화를 알아보았으며 네 번째로 결합 직교 다중 빔 형성기술을 위해 선정된 사용자들의 채널상태정보를 기반으로 송신단 전력제어를 한 경우의 그렇지 않은 경우의 합용량 증대성능을 비교하였다.

5.1. 결합 직교 다중 빔 형성기술의 합용량

그림 12, 13는 각각 2×1 MISO 환경과 3×1 MISO 환경에서 수신단 평균 신호 대 간섭잡음비에 따른 결합 직교 다중 빔 형성기술의 합용량 성능을 나타내고 있다. 다중 사용자의 수가 증가함에 따라 합용량이 이차 로그함수에 따라 비선형적으로 증가하는 것을 통해 다중 사용자 다이버시티 이득을 얻고 있음을 확인할 수 있으며 수신단 평균 신호대 간섭잡음비가 클수록 다중 사용자 수가 증가함에 따라 다중 사용자 다이버시티를 더 빠르게 얻는 것을 확인할 수 있다.

또한 2×1 MISO 환경보다 수단 안테나수가 많은 3×1 MISO 환경에서 다중 사용자의 수가 증가함에 따라 합용량이 더 큰 것을 확인할 수 있으며 이는 동시에 더 많은 사용자에게 신호를 전송함으로써 얻어지는 멀티플렉싱 이득의 차이 때문이다.
그림 12. 2×1 MISO 환경에서 합용량 성능

그림 13. 3×1 MISO 환경에서 합용량 성능
그림 14, 15는 각각 2×1 MISO 환경과 3×1 MISO 환경에서 모든 다중 사용자의 수신단 신호대 간섭잡음비를 되먹임 받는 경우, 상대적으로 신호대 간섭잡음 비가 큰 네명의 다중 사용자들에게만 되먹임을 받는 경우와 불규칙 다중 빔 형성기술의 합용량 성능을 나타내고 있다. 그림 15, 16에서 결합 직교 다중 빔 형성기술을 이용한 합용량 증대성능이 불규칙 다중 빔 형성기술의 합용량 증대성능보다 뛰어남을 알 수 있다. 특별히 다중 사용자의 수가 적은 환경에서 기존 사용자의 채널상태정보를 기반으로 다중 빔을 형성하기 때문에 Gram Schmdit 직교화를 통한 조향행렬과 다중 사용자들의 채널상태가 적합함이 증가하게 되기 때문에 보다 우수한 성능을 보인다.

모든 사용자에게 되먹임을 받는 경우와 4명의 사용자에게 되먹임을 받는 경우의 합용량을 비교해 보면 다중 사용자 수가 증가함에 따라 모든 사용자의 되먹임을 받는 경우의 합용량 증대성능이 우수한 것을 알 수 있다. 이는 되먹임량이 감소함에 따라 다중 사용자 다이버시티 이득이 감소하기 때문이다. 그러나 네명의 사용자들에게만 되먹임을 받는 경우에도 불규칙 다중 빔 형성기술의 경우보다 합용량 증대성능이 우수함을 알 수 있다.

![Graph](image)

그림 14. 2×1 MISO 환경에서 불규칙 비 형성기술과 합용량 비교
그림 15. 3×1 MISO 환경에서 불규칙 빔 형성기술과 합용량 비교

5.2. 한정된 되먹임을 고려한 직교 빔 형성기술

그림 16, 17은 각각 2×1 MISO 환경과 3×1 MISO 환경에서 되먹임량의 비율 감소에 따른 복합 직교 빔 형성기술의 합용량 증대효과를 나타내고 있다. 그림 16에서 전체 사용자들 중 30%의 사용자들의 되먹임을 받지 않는 경우의 합용량 증대효과 감소는 무시할 만한 수준이었으나 40% 이상의 사용자들의 되먹임을 받지 않는 경우 합용량 증대효과가 급격히 감소하기 시작한다. 그러나 충분히 많은 다중 사용자 환경에서는 유사한 성능을 보이고 있다. 그림 17에서 10%의 사용자들의 되먹임을 받지 않는 경우의 합용량 증대효과 감소는 무시할 만한 수준이었으나 20% 이상의 사용자들의 되먹임을 받지 않는 경우 합용량 증대효과가 급격히 감소하기 시작한다. 이는 송신단 다중 안테나 수가 증가함에 따라 직교 빔 빔에 사용자들을 선정하는 자유도가 증가하게 되어 다중 사용자 다이버시티를 얻기 위해 더 많은 다중 사용자의 수를 필요로 하기 때문이다. 그림 16의 20%의 되먹임을 받지 않는 경우와 그림 17의 20%의 되먹임을 받지 않는 경우를 비교해 보면 적은 다중 사용자 수의 영역에서 송신단 안테나 수가 2개인 경우보다 송신단 안테나 수가 3개인 경우의 성능이 더욱 열
화면을 확인할 수 있다. 이러한 현상은 적은 사용자 수에서 멀티플렉싱 이득 보다 효과적인 사용자 선정에 의한 다중 사용자 다이버시티가 더 큼을 의미한다.

그림 16. 2×1 MISO 환경에서 되먹임량 감소에 따른 합용량 성능변화

그림 17. 3×1 MISO 환경에서 되먹임량 감소에 따른 합용량 성능변화
5.3. 송신단 전력제어에 의한 합용량 증대

그림 18, 19는 각각 2×1 MISO 환경과 3×1 MISO 환경에서 모든 사용자의 되먹임을 받는 경우, 순시적 채널상태가 좋은 네명의 다중 사용자에게 되먹임을 받는 경우 및 순시적으로 채널상태가 좋은 네명의 다중 사용자에게 되먹임을 받으며 송신단 전력제어 기술을 이용한 경우의 합용량 증대효과의 성능변화를 나타내고 있다.

그림 18에서 모든 사용자의 되먹임을 받는 경우와 순시적으로 채널상태가 좋은 네명의 다중 사용자에게 되먹임을 받고 송신단 전력제어를 한 경우가 유사한 합용량 증대성능을 보여주고 있다. 이러한 현상은 직교 다중 빔을 형성하는 과정에서 다중 사용자의 수가 많아 간섭이 적은 수신단 신호대 간섭잡음비를 갖는 다중 사용자의 수가 많을 확률이 높은 경우와 순시적으로 채널 상태가 좋은 네명의 사용자의 되먹임을 받아 송신단 전력제어를 통한 간섭배제 기술이 유사한 성능의 다중 사용자 다이버시티를 얻기 때문이다.

그림 18. 2×1 MISO 환경에서 전력제어에 따른 합용량 성능변화
그림 19. 3×1 MISO 환경에서 전력제어에 따른 합용량 성능변화

그러나 순시적 채널상태가 좋은 대인의 사용자에게 되먹임을 받고 송신단 전력제어를 하지 않은 경우는 되먹임량의 감소에 의해 간섭의 효과가 커지게 되어 멀티플렉싱 이득이 급격히 감소하기 때문에 합용량 증대효과의 감소를 일으키게 된다. 이러한 현상은 송신단 다중 안테나 수가 증가하여도 간섭에 의한 멀티플렉싱 이득의 감소로 인해 그림 19에서와 같이 합용량 증대효과의 감소를 일으킨다.

전산 모의실험을 통해 결합 직교 다중 밴 형성기술을 이용하여 다중 사용자 다이버시티를 획득하기 위해서는 다중 사용자들의 되먹임량이 가장 중요한 요인임을 알 수 있었으며 순시적으로 일정한 되먹임을 받으면 송신단 전력제어를 할 경우 모든 다중 사용자에게 되먹임을 받는 경우와 유사한 합용량 증대성능을 기대할 수 있었다. 이러한 결과는 효과적으로 멀티플렉싱 이득과 다중 사용자 다이버시티를 획득하기 위해 전체 사용자들의 되먹임을 받는 대신 순시적으로 채널상태가 좋은 일부 사용자의 되먹임만을 받아 송신단 전력제어를 통해 전송할 경우 되먹임량을 줄일 수 있게 된다.
제6장 결 론

본 논문은 결합 직교 다중 빔 형성기술을 제안하였다. 결합 직교 다중 빔 형성기술은 종래의 베타얼어득을 얻기 위해 사용하던 빔 형성 기술과 다중 빔 형성기술을 결합한 형태를 가지고 있다. 또한 직교 다중 빔을 형성하기 위해 필요한 직교 조향행렬을 Gram-Schmidt 직교화 방법을 사용하여 종래의 순차적인 베타 생성보다 빠르게 시변하는 무선 채널환경에서 효과적으로 조향행렬을 구할 수 있는 특징을 가지고 있다.

제안한 직교 다중 빔 형성기술의 성능은 분석하기 위해 송신단 안테나 수는 2, 3개의 MISO 환경에서 지연합 빔 형성기를 사용하여 전산 모의실험을 수행하였다. 전산 모의실험은 내가지 성능을 분석하기 위해 수행하였으며 사례로 종래의 불규칙 다중 빔 형성기술과 합용량 증대성을 비교하였다. 두 번째로 기준 사용자의 지정을 송신단에서 순차적 무선 채널환경이 가장 좋은 사용자를 선정한 경우와 송신단에서 기준 사용자 선정에 관한 정보 없이 선정하는 경우의 성능변화를 실험하였다. 세 번째로 최적화방법의 변화에 따른 결합 직교 다중 빔 형성기술의 합용량 증대성능의 변화를 알아보았으며 세 번째로 결합 직교 다중 빔 형성기술을 사용한 사용자의 채널상태정보를 기반으로 송신단 전력제어를 한 경우와 그렇지 않은 경우의 합용량 증대성능을 비교하였다.

전산 모의실험 결과 결합 직교 다중 빔 형성기술은 종래의 불규칙 다중 빔 형성기술에 비해 다중 사용자의 수가 적은 환경에서 좋은 합용방 증대성을 가지고 있었다. 각각 2×1 MISO 환경과 3×1 MISO 환경에서 30%의 뒤무임금과 10%의 뒤무임금을 감소하여도 합용량 증대성능이 열과 뒤지 않는 것을 확인하였다. 결합 직교 다중 빔 형성기술을 이용하여 효과적으로 멀티플렉스 이득과 다중 사용자 다이버시티를 얻기 위해서는 순차적으로 채널상태가 좋은 일부 사용자들에게만 뒤무임금을 받아 송신단 전력제어 기술을 이용해 간섭을 배제하는 것이 효과적인 방법임을 확인하였다.
참 고 문 헌

감사의 글

졸업을 앞두고 석사학위 논문을 제출하게 된 모든 영광을 주님께 돌려 드립니다. 지난 시간동안 힘들고 어려운 일들을 겪을 때마다 용기를 잃지 않도록 저를 사랑해 주신 아버님 어머님께 감사드립니다. 항상 격려를 잃지 않았던 형에게도 감사드립니다.

2년의 대학원 생활동안 지도해 주신 정재학 교수님께 깊은 감사를 드리며 함께 공부한 정원, 양수, 석현, 홍원에게도 고마움의 마음을 표시하고 싶습니다. 앞으로 열심히 공부할 Dipak, 일신, 현수, 재호에게도 최선의 노력을 경주하라는 당부와 함께 걸지 않은 시간이었지만 즐거운 추억을 만들어 준 것에 대해 감사하고 싶습니다.

같이 자고 먹고 울고 웃으며 함께 해왔던 현구, 영준, 남훈에게도 잊지 못할 추억과 행복한 기억에 대해 감사하고 싶습니다. 또 힘들 때마다 함께 손상대가 되어준 계택형, 주경형, 원근형, 규형형과 함께 대학원 생활을 함께 했던 윤식, 윤재, 준우, 인수, 재현에게도 감사의 말을 전하고 싶습니다.

마지막으로 지난 8년 동안 항상 웃음을 주며 둘 옆에 있었던 사랑하는 민향에게 감사의 마음을 전하고 싶습니다.