YVH1의 대량발현에 대한 연구

1. 서론
2. 다양한 prokaryotic expression vector를 이용한 YVH1의 발현
3. 결과
4. 결론

참고문헌
Studies on the Overexpression of YVH1
Studies on the Overexpression of YVH1

1999 年 2 月

仁荷大學校大學院
化學科(化學專攻)
全晃權
이 논문을 全晃槿의 碩士學位論文으로 認定함.

1999年2月

主審

副審

委員
요 약

YVH1 (yeast VH1)은 S. cerevisiae의 단백질 티로신 인산가수분해효소 (protein tyrosine phosphatase, PTPase)로서 Guan 등에 의해 최초로 GST (glutathione-S-transferase) 융합단백질 형태로 E. coli를 숙주로 발현되었다. 그러나 발현하는 과정에서 부분적으로 분해되는 현상으로 인해 단백질 수준에서의 여러 특징들이 자세히 연구되지 못했다.

본 연구에서는, 온전한 재조합 YVH1을 얻기 위하여 E. coli를 숙주로 하는 다양한 prokaryotic expression vector와 YVH1에 대한 folding system이 잘 갖춰진 효모를 숙주로 하는 eukaryotic expression vector를 사용하여 YVH1 발현을 시도하였다.

Prokaryotic expression vector인 pGEX-2T와 pTACTAC을 이용한 실험에서는 재조합 YVH1이 soluble form으로 발현되었으나 무세포추출물을 얻는 과정에서 분해되는 현상이 나타났고, pT7-7을 이용한 실험에서는 분해는 되지 않았으나 활성이 없는 YVH1을 inclusion body 형태로 얻을 수 있었다. Eukaryotic expression vector인 pYES을 이용한 yeast expression을 시도하였으나 YVH1은 발현되지 않았다.

이러한 결과들을 바탕으로, 앞으로 온전한 형태의 YVH1을 얻기 위하여 inclusion body에 대한 refolding 과정과 발현 또는 무세포추출물을 얻는 과정에서 발생하는 단백질 분해현상을 방지하기 위한 연구가 더 진행되어야 할 것으로 생각된다.
Abstract

Yeast VH1 (YVH1), a *S. cerevisiae* protein tyrosine phosphatase (PTPase), was expressed from an *E. coli* expression system as a glutathion-S-transferase(GST) fusion protein by Guan et al. Characterization of YVH1, however, was not easy because of the partial degradation of the protein during the expression. To obtain the YVH1 in a native form both prokaryotic and eukaryotic expression vectors were employed for the expression of the protein.

In the experiment for the expression using prokaryotic expression vectors pGEX-2T and pTACTAC, recombinant YVH1 was produced in a soluble form, but it was degraded during expression and cell lysis. Utilization of pT7-7 vector, on the other hand, afforded undegraded YVH1. In this case, however, the protein was obtained as an inclusion body which is not properly folded. When the yeast expression vector pYES2 was used, YVH1 was not successfully expressed.

Based on these results, production of YVH1 in an active form requires more study for the refolding of the inclusion body and for the prevention of degradation during *E. coli* expression and cell lysis.
목 차

요약...1

Abstract..2

I. 서론..3

II. 실험...6

 1. 시약 및 기구...6
 2. 다양한 prokaryotic expression vector를 이용한
 YVH1의 발현...7
 3. Eukaryotic expression vector를 이용한
 YVH1의 발현...17

III. 결과...19

IV. 결론..38

V. 참고문헌..40

270549
I. 서 론

단백질 티로신 인산가수분해효소 (protein tyrosine phosphatase, PTPase)는 세포 내 단백질의 인산티로신기로부터 인산기를 가수분해하는 효소로서 단백질 티로신 키나제 (protein tyrosine kinase, PTK)에 의해 촉매되는 반응의 역반응을 촉매한다. 이 두 효소에 의한 가역적인 인산화 및 탈인산화는 세포 내 신호 전달 과정, 세포의 생장 및 분화, 생체 내 대사 작용 등 다양한 생화학적 조절 작용에 있어 중요한 역할을 한다.\(^1\)

![Chemical Diagram]

그림 1. PTK와 PTPase의 촉매 반응
PTPase는 1980년대 후반까지 관심의 대상이 되지 못하다가 1988
년 Tonks 등이 사람의 태반에서 PTP1B를 최초로 단리하고 그 아
미노산 서열을 발현함으로써 본격적인 연구가 시작되었다. 90년대
초까지 PTPase 연구의 많은 부분이 새로운 PTPase 유전자 클로
닝에 집중되었고 그 결과 다양한 생물체로부터 수십개의 PTPase
유전자에 hybridization 및 PCR (polymerase chain reaction)기술을
이용하여 cloning되었다.

1991년 Guan 등은 vaccinia virus genome으로부터 PTPase와 아
미노산 서열에 있어 유사성을 보이는 vaccinia virus H1 open
reading frame를 PCR 기술을 이용하여 cloning하였다. 이 유전자를
E. coli를 숙주로 음 발현하여 생성된 단백질이 인산트로신기와 인
산트레오닌기로부터 인산기를 가수분해하는 Dual Specific Phos-
phatase(DSP)임을 보이고, 3 VH1(vaccinia virus VH1 phosphatase)
이라고 명명하였다. 또 Guan 등은 1992년 Saccharomyces
cerevisiae로부터 VH1과 아미노산 서열이 유사한 YVH1(yeast
VH1)을 cloning하여 VH1과 같은 방법으로 발현시키고 뒤 몇몇 인산
화된 기질에 대한 활성을 측정하여 인산트레오닌기에 대해서는 반
응성이 없고, 인산트로신기의 인산기만 가수분해하는 phosphatase
임을 보였다. 또한 YVH1을 inactivation시킨 결과 yeast의 성장속
도가 줄어들고, 생장에 있어 필수요소인 nitrogen source를 적게 공
급하였을 때 YVH1 mRNA가 현저하게 증가되는 현상을 보고하였
는데, 4 이는 mouse VH1-like mRNA, 즉 MVH1이 serum 자극에
의해 현저하게 증가하는 현상5과 유사성을 보인다. MVH1이 세포분
열에 있어 초기에 발현되는 유전자로 밝혀진 점과 cell cycle에서 G₀→G₁ 전이에 관련이 있는 것으로 여겨지는 것처럼٥٦٧ VH1-like subfamily들도 역시 신호 전달과 cell cycle 조절에 관여하는 것은 아닌가 하는 추측도 있고 있다. 그 외에 Guan등에 의해 행해진 실험에서 인산티로신기를 가지는 몇가지 기질에 대한 YVH1의 phosphatase activity도 측정되었는데, VH1에 비해 현저하게 낮은 activity를 가지는 것으로 나타났으나, 박테리아에서 발현시키는 과정에서 YVH1이 분해되는 현상이 동시에 밝혀져 명확한 specific activity 측정 결과를 얻지 못했다٨.

이렇듯 YVH1의 생체내의 역할과 그 기질에 대해서는 아직도 명확하게 알려진 바가 없으며, 이러한 상황에서 온전한 형태의 YVH1을 얻어내는 것이 당면 과제로 지목되고 있다.

따라서 본 연구에서는 온전한 recombinant YVH1을 발현하는데 초점을 맞추었다. 단백질을 발현하기 위한 숙주로 다양한 organism이 사용되어지나 그 특성이 잘 알려져 있고, 조작의 용이성으로 인해 선호되는 대장균(E. coli)과 YVH1을 위한 folding system이 보다 잘 갖춰져 있는 효모(yeast)를 발현 숙주로 선택하고, 다양한 특성을 보이는 여러 prokaryotic expression vector를 사용하여 YVH1의 발현 상태를 비교하면서 실험을 수행하였다.
2. 다양한 prokaryotic expression vector를 이용한 YVH1의 발현

1.1) pGEX vector를 이용한 YVH1 expression vector (pGEX-2T-yvh1, pGEX-3X-yvh1)의 제조

*S. cerevisiae*의 genomic DNA를 template으로 하여 yvh1의 개시 코돈 근처와 종결코돈 뒤의 지역에 대해 양 끝부분에 EcoRI site가 만들어 지도록 overhang sequence를 미리 삽입하여 primer를 제작하였고 그 sequence는 아래와 같다.

CH-40 (5’-primer)
5’-GCGAATTTCAGATGGCTGGAAATGCA-3’

CH-41 (3’-primer)
5’-ACGAATTTCAGCAACGAGGTCAAG-3’

Taq. DNA polymerase를 이용하여 annealing temperature를 60°C로 PCR중복과정을 거쳐 1200bp의 DNA조각을 얻어냈다. 이 DNA조각과 pUC19을 EcoRI으로 자른 후 ligation하고 *E. coli* strain DH5α에 transformation하여 screenig과정을 거쳐 올게 만들 어진 pUC19-YVH1 plasmid를 가지는 colony를 얻었다.
이렇게 얻은 colony를 5mL LB/amp medium(ampicillin 농도가 50 μg/mL인 LB medium(10g tryptone, 5g yeast extract, 10g NaCl/1L))에 하룻밤 배양 후 DNA 추출과정을 거쳐 pUC19-YVH1 plasmid를 얻어내고 prokaryotic expression vector인 pGEX-2T와 같이 EcoRI으로 자른 후 ligation하고 E. coli strain BL21에 transformation하여 screenig과정을 거쳐 올게 만들어진 pGEX-2T-yvh1 plasmid를 가지는 colony를 얻었다.

pGEX-2T-yvh1 plasmid와 pGEX-3X plasmid를 5mL LB/amp medium에 배양시킨 후 DNA추출과정을 통해 얻고, pGEX-2T-yvh1은 BamHI로 자르고 pGEX-3X는 EcoRI으로 자른 후 각각 glass milk를 이용한 geneclean과정을 거쳤다. 이렇게 얻은 각각의 DNA조각을 PstI으로 다시 자른 후 ligation을 하고 E. coli strain DH5α에 transformation하여 screenig과정을 거쳐 올게 만들어진 pGEX-3X-yvh1 plasmid를 가지는 colony를 얻었다.
1.2) pGEX-2T-yvh1, pGEX-3X-yvh1을 이용한 GST-YVH1의 발현

GST fusion YVH1을 대량생산하기 위하여 위에서 선별된 colony와 positive control로 pGEX-3X를 DH5α에 transformation 시켜 얻은 colony를 LB/amp medium 5mL에 inoculation시킨 후 37℃, 250rpm에서 하룻밤 배양시켜 overnight culture를 만들었고, 이 중 각각 0.25mL를 취하여 새로운 25mL LB/amp medium에 inoculation시킨 후 같은 조건에서 OD600=1.0정도 될 때 가지 배양 하였다. 그 후 IPTG (Isopropyl β-D-thiogalactopyranoside)를 각 각 최종 농도가 0.4mM되게 가한 후 같은 조건에서 배양하면서 일정시간 간격으로 4mL씩의 cell을 취하여 4℃, 5000rpm으로 원심분 리하여 모으고, 그 중 1mL에 해당하는 cell에 2×SDS sample buffer(100mM Tris·Cl(pH 6.8), 200mM dithiothreitol, 4% SDS, 0.2% bromophenol blue, 20% glycerol) 40μL를 가하여 vortex하고 100℃, 5분간 붓인 후 폴리아크릴아미드 젤 전기영동으로 발현 여부를 확인하였다. 즉 Molecular Cloning : a Laboratory Manual (Sambrook, Fritsch, Maniatis, 1989)에 나온 방법을 기초로 하여 10% 폴리아크릴아미드 젤에서 35mA로 1시간 정도 분리한 후 Coomassie Blue로 착색시키는 방법을 이용하였다. 이때 사용한 완충용액은 SDS electrophoresis buffer(3g Tris base, 14.4g glycine, 1g SDS/1L, pH 8.3)였다.
1.3) *E. coli*로부터 무세포 추출물 분리 및 단백질 분석

GST-YVHI이 얼마나, 어떤 형태로 발현이 되었으며, soluble form으로 발현되었을 경우 YVHI이 발현되지 않은 상태보다 상대적으로 pNPP에 대해 어느정도 activity를 가지고 있는지 비교하기 위해 하룻밤동안 발현시킨 pGEX-3X, pGEX-3X-yvhl, pGEX-2T-yvhl을 포함하는 각각의 3mL에 해당하는 cell pellet을 0.1mL buffer A (33mM Tris·Cl, 2.5Mm EDTA, 10mM β-mercaptoethanol, pH8.0)에 녹인후 vortex하고 lysozyme (10mg/mL)를 40μg씩 넣고 상온에서 15분간 반응시켰다. 이 세포용액을 액체 젤소로 얻었다 녹이는 과정을 3번 반복하여 무세포 추출물을 얻었다. 이 무세포 추출물에 1M MgCl2 1μL와 DNase (1mg/mL) 2.4μL를 첨가하여 실온에서 30분간 반응시킨 후 0.5M EDTA 8μL와 10% Triton X-100 24μL를 가하고 10분간 반응시킨 뒤 4℃, 45,000g로 30분간 원심분리하여 각각의 무세포 추출물과 cell debris를 얻었다.

이런계 얻은 무세포 추출물은 곧바로 pNPP를 기질로 이용한 PTPase activity를 측정하는데 사용되어졌는데, buffer C (10mM pNPP, 100mM HEPES, 10mM DTT, 5mM EDTA, pH7.0)에 무세포 추출물을 가하여 반응부피가 50μL되게 하여 실온에서 1~60분간 반응시킨 후 0.5N NaOH 950μL quenching하였다. 효소반응의 결과로 방출된 *p*-nitrophenol의 정량은 405nm에서의 흡광도를 측정하여 *p*-nitrophenol 표준용액을 사용하여 작성한 격량곡선과 비교
하는 방법을 사용하였다.

단백질의 농도는 Bradford 용액(100mg Coomassie brilliant blue R, 95% EtOH 50mL, 85% H₃PO₄ 100mL/1L)을 이용하여 정량하였다. 실험에서 무세포 추출물이 포함된 용액 50μL와 cell debris를 적당량 취하여 2×SDS gel-loading buffer를 가하고 vortex 후 100°C에서 5분간 두었다가 식혀서 얻은 용액이 포함된 용액 50μL에 각각 Bradford 용액 900μL 넣고 10분후에 595nm에서 흡광도를 측정하고, 1~15μg의 bovine serum albumine을 증류수에 녹여 만든 표준용액을 이용하여 작성한검량곡선과 비교함으로써 단백질의 농도를 얻었다.
2.1) pT7-7 vector를 이용한 YVH1 발현 백터 (pT7-7-YVH1)의 제조

앞서 얻은 pUC19-yvh1 plasmid를 가지는 colony를 5mL LB/amp medium에 하룻밤 배양후 DNA추출과정을 거쳐 pUC19-yvh1 plasmid를 얻어내고 prokaryotic expression vector인 pT7-7과 같이 EcoRI으로 자른 후 ligation을 하고 E. coli strain DH5α에 transformation하여 screenig를 거쳐 올게 만들어진 pT7-7-yvh1 plasmid를 가지는 colony를 얻었다.

2.2) pT7-7-yvh1을 이용한 YVH1의 발현

YVH1을 대량생산하기 위하여 위에서 선별되어 추출된 pT7-7-yvh1을 E. coli strain BL21(DE3)에 transformation시켰다.

자라난 colony를 LB/amp medium 5mL에 inoculation시킨 후 37℃, 250rpm에서 하룻밤 배양시켜 overnight culture를 만들었고 이중 2.5mL를 취하여 새로운 250mL LB/amp medium에 inoculation시킨 후 같은 조건에서 OD600=1.0정도 될 때까지 배양하였다. 그 후 각 50mL씩 별관된 250mL 삼각 플라스크에 옮겨 담은 후 IPTG를 각각 최종 농도가 0.4mM, 0.8mM, 1.2mM, 1.6mM, 2.0mM가 되게 가한 후 같은 조건에서 5시간 배양하였다.

5시간 배양된 cell을 각 1mL씩 취하여 4℃,5000rpm으로 원심분리하여 모으고, 2×SDS sample buffer 40μL를 가하여 vortexing하고
100°C, 5분간 끓인 후 폴리아크릴아미드 젤 전기영동으로 발현 여부를 확인하였다.

또한 IPTG농도 및 발현온도에 대한 영향을 살펴보기 위해 0.2mM, 0.4mM되게 IPTG를 넣고, 각각 25°C, 30°C, 37°C의 온도에서 발현시킨 후 위와 동일한 방법으로 YVH1발현여부를 확인하였 다.

2.3) *E.coli*로부터 무세포 추출물 분리 및 단백질 분석

YVH1이 발현되지 않은 상태보다 상대적으로 pNPP에 대해 어느 정도 activity를 가지고 있는지 비교하기 위해 pT7-7 vector만을 *E.coli* strain BL21(DE3)에 transformation시켜 pT7-7 vector를 포함하는 colony를 screening을 통해 얻었다.

이렇게 얻은 colony와 pT7-7-yvh1을 포함하는 colony를 5mL LB/amp medium에 inoculation시키고 37°C, 250rpm에서 하룻밤 배양시켜 overnight culture를 만들었고 이 중 0.5mL를 위하여 각 각 새로운 50mL LB/amp medium에 inoculation시킨 후 같은 조건에서 OD600=1.0 정도 될 때 까지 배양하였다. 그 후 각각 IPTG를 각각 0.5mM되게 가한 후 같은 조건에서 7시간 배양하였다. 이렇게 배양된 cell 50mL를 50mL centrifuge tube에 옮겨 닫은 후, 4°C, 5000rpm으로 원심분리하여 세포만 수집하였다.

세포를 0.6mL buffer A(33mM Tris·Cl, 2.5Mm EDTA, 10mM β-mercaptoethanol, pH8.0)에 녹인후 vortex하고 lysozyme (10mg/
mL)을 400 μg씩 넣고 상온에서 15분간 반응시켰다. 이 세포융액을 액체 질소로 얼리고 녹이는 과정을 3번 반복하여 무세포 추출물을 얻었다. 이 무세포 추출물에 1M MgCl₂ 6.25 μL와 DNaseI(10mg/mL) 3 μL를 첨가하여 실온에서 30분간 반응시킨 후 0.5M EDTA 50 μL와 10% Triton X-100 75 μL를 가하고 10분간 반응시킨 뒤 4℃, 45,000g로 30분간 원심분리하여 각각의 무세포 추출물과 cell debris를 얻었다.

위에서 얻은 무세포 추출물을 1.3에 언급한 방법을 따라 PTPase 활성측정과 단백질 정량에 사용하였다.

2.4) Inclusion body의 solubilization

Cell debris에서 발견된 inclusion body를 solubilization시키기 위해, 100mL 배양된 세포로부터 얻은 cell debris를 2% Triton X-100(in bufferA) 2mL를 넣어 vortex하여 얻은 혼탁액을 둘로 나누어 새 tube에 담고, 4℃에서 45,000g로 30분간 원심분리하는 washing과정을 거친 후 얻은 pellet에 6M Guanidine·HCl, 8M urea를 각각 1mL씩 넣어서 vortexing한 후, shaking incubator에서 30℃, 100rpm으로 1시간 반응을 시킨 후 4℃에서 45,000g로 30분 동안 원심분리하여 상층액을 얻어내고 이 상층액과 끝까지 남은 cell debris를 SDS-PAGE를 통해 solubilization정도를 파악했다.
3.1) pTACTAC vector를 이용한 YVH1발현 벡터 (pTACTAC-yvh1)의 제조

pTACTAC vector를 E. coli strain DH5α에 transformation시켜 이 vector를 함유하는 colony를 얻어낸 후, pT7-7-yvh1를 함유하는 E. coli strain DH5α와 함께 각각 LB/amp medium 3mL에 하룻밤 배양하고 LB/amp medium 2mL를 각각 더 첨가하여 30분정도 배양한 후 chloroamphenicol을 170 μg/mL의 채가 후 3시간정도 더 배양하고 cell을 모아 DNA 추출과정을 거쳐 두 vector를 얻어냈다.

두 vector를 NdeI과 HindIII로 자른 후 ligation하고 DH5α에 transformation시켜 수십개의 colony를 얻은 후 screening과정을 거쳐 올바르게 ligation된 plasmid(pTACTAC-yvh1)를 가지는 colony를 얻어 냈다.

3.2) pTACTAC-yvh1을 통한 YVH1의 발현

YVH1을 대량생산하기 위하여 앞서 선별된 pTACTAC-yvh1을 함유하는 colony를 LB/amp medium 5mL에 inoculation시킨 후 37℃, 250rpm에서 하룻밤 배양시켜 overnight culture를 만들었고 이 중 2.5mL를 취하여 새로운 250mL LB/amp medium에 inoculation 시킨 후 같은 조건에서 OD600=1.0정도 될 때 까지 배양하였다. 그 후 각 50mL씩 병균된 250mL 삶각 플라스크에 옮겨 담은 후 IPTG
를 각각 최종 농도가 0.2mM, 0.4mM가게 가한 후 각각 25℃, 37℃에서 배양하면서 일정 시간 간격으로 4mL의 cell을 취하고, 이 가운데 1mL씩을 취하여 곧바로 SDS-PAGE analysis을 행하고 3mL의 cell을 가지고 앞서 언급한 방법대로 무세포 추출물을 분리 및 단백질 분석을 하였다.
3. Eukaryotic expression vector를 이용 YVH1의 발현

1) pYES2 벡터를 이용한 YVH1 발현 벡터 (pYES2-yvh1)의 제조

pYES2 vector를 E. coli strain DH5α에 transformation시켜 이 vector를 함유하는 colony를 얻어낸 후, pT7-7-yvh1를 함유하는 E. coli strain DH5α와 함께 각각 LB/amp medium 5mL에 배양하고 DNA 추출 과정을 통해 각 plasmid를 얻었다.
두 plasmid를 EcoRI으로 자른 후 ligation하고 DH5α에 transformation시켜 수십개의 colony를 얻은 후 screening과정을 거쳐 올바르게 ligation된 plasmid(pYES2-yvh1)를 가지는 colony를 얻어 냈다.

2) pYES2-yvh1을 통한 YVH1의 발현

pYES2-yvh1 plasmid, positive control로 사용할 pRDK-SEP1 plasmid와 negative control로 아무런 plasmid가 없는 밀균된 3차 증류수를 METHODS in YEAST GENETICS (Alison Adams, Daniel E. Gottschling, Chris A. Kaiser, Tim Steams, 1997)에 나온 방법을 토대로 yeast strain BJ5464에 LiAc를 사용하는 방법으로 transformation 시켰다. 그런 후 CM/Glu-Ura (yeast nitrogen
base(w/o a.a.) 6.7g, glucose 20g, casamino acid 0.5%, Bacto agar 17.5g, adenine 40μg, tryptophane 40μg/L, pH5.5) plate에 칼라 30℃에서 2일간 배양하여 각각의 pYES2-yvh1과 pRDK-sep1을 함유하는 yeast colony만을 선택적으로 얻어냈다.

이 colony를 각각 5mL CM/Glu-Ura(yeast nitrogen base(w/o a.a.) 6.7g, glucose 20g, casamino acid 0.5%, Bacto agar 17.5g, adenine 40μg, tryptophane 40μg/L, pH5.5) medium에 inoculation시키고 30℃에서 250rpm으로 하룻밤 배양 후, 새로운 CM-Ura (CM/Glu-Ura에서 glucose를 넣지 않은) medium 25mL에 OD600= 0.2되면 회색시켜 가한 후 OD600=1.0이 될때까지 약 17시간정도 배양을 하고 galactose를 2%씩 첨가한 후 일정 시간 간격으로 cell을 각 2mL씩 취하였다.

이렇게 모은 cell을 washing buffer (20mM Tris?Cl, pH7.5, 150mM NaCl, 1mM EDTA, 1mM PMSF) 200μL로 washing후 100×protease inhibitor mix (0.1mg chymostatin, 2mg aprotinin, 1mg pepstatinA, 1mg E-64, 0.5mg leupeptin, 1mg antipain, 50mM benzamidine/10mL 증류수)를 1×로 묻혀 넣은 bufferA 80μL로 resuspend시킨 후, glass bead(0.5mm dia.)를 동일 부피만큼 가하여 30초간 vortex하고 3분간 ice-bath에서 열을 식히는 과정을 5번 반복한 후 다시 bufferA 80μL를 가하여 섞은 후 80μL의 무세포 추출물을 얻었다.

무세포 추출물을 이용한 단백질 정량과 PTPase activity 측정은 앞서 언급한 방법을 따라 했다.
III. 결과

1.1. GST-YVH1 발현 벡터 (pGEX-3X-yvh1, pGEX-2T-yvh1)의 제조

Ligation 혼합물을 transformation시켜 얻은 colony를 여러개 배양하여 plasmid를 추출하였다. pGEX-2T-yvh1에 대해서는 yvh1 gene가 삽입되었는지 확인하기 위한 1차 선별을 위해 BamHI로 절단하여 6130bp의 DNA조각이 나오는 확인하였고, 이렇게 해서 선정된 plasmid를 XmnI로 절단해서 4010bp, 1580bp, 540bp의 DNA 조각이 나오는 가를 통해 삽입방향을 확인하여 최종적으로 올바른 pGEX-2T-yvh1(그림 2)을 선별하였다.

그림 2. pGEX-2T-yvh1
pGEX-3X-yvh1은 pGEX-3X vector의 amp^r gene의 일부를 데어내고, 여기에 이 amp^r gene의 일부와 yvh1 gene을 포함하는 DNA조각을 ligation시켜 LB/amp plate에서 살아남은 colony를 얻어냄으 로써 올바른 pGEX-3X-yvh1을 선별할 수 있었으나 한번의 확인을 더하기 위해 EcoRI으로 절단하여 4900bp, 1200bp의 DNA 조각이 나오는 가를 확인하여 선별해냈다.(그림3)

그림 3. pGEX-3X-yvh1
1.2. SDS-PAGE 분석을 통한 GST 및 GST-YVH1 발현의 확인

IPTG 최종농도를 0.4mM에게 하여 하룻밤 유도발현시킨 뒤 얻은 cell을 곧바로 2×SDS loading buffer로 처리하였다. SDS-PAGE 결과 pGEX-3X를 이용한 GST(약 26kD)와 pGEX-3X-yvh1를 이용한 GST-YVH1의 경우 GST만 발현된 것을 확인 할 수 있었으나 pGEX-2T-yvh1을 이용한 경우 약 66kD의 GST-YVH1이 발현된 것을 확인할 수 있었다.(그림4)

cell을 캐고 무세포 추출물 및 cell debris에 남아있는 단백질에 대해 SDS-PAGE 분석 결과 GST와 GST-YVH1이 모두 inclusion body form으로 존재하지 않고 soluble form으로 존재하는 것을 확인 할 수 있었다. 그러나 GST의 경우 무세포추출물속에서 여전히 많은 양으로 존재하는데 비해 GST-YVH1의 경우 그 양이 현저히 줄어든 것을 확인 할 수 있었다.(그림5)
그림 4. IPTG를 가한 후 일정시간 간격으로 취한 cell을 2×SDS sample buffer로 처리하여 얻은 SDS-PAGE분석 결과

lane 1. molecular weight standards, from top to bottom: 205, 116, 97, 84, 66, 55, 45, 36, 29, 24
lane 2~4. pGEX-3X를 함유한 cell에 IPTG를 가하고 일정시간 후 (0h, 3h, 5h) 취한 세포로부터 얻은 추출물
lane 5~7. pGEX-3X-yvh1을 함유한 cell에 IPTG를 가하고 일정시간 후 (0h, 3h, 5h) 취한 세포로부터 얻은 추출물
lane 8~10. pGEX-2T-yvh1을 함유한 cell에 IPTG를 가하고 일정시간 후 (0h, 3h, 5h) 취한 세포로부터 얻은 추출물
그림 5. GST 및 GST-YVH1의 발현이 확인된 세포로부터 얻은 무세포 추출물과 cell debris의 SDS-PAGE 분석

lane 1. molecular weight standards, from top to bottom: 205, 116, 97, 84, 66, 55, 45, 36, 29, 24
lane 2, 3. DH5α/pGEX-3X 무세포 추출물과 cell debris
lane 4, 5. DH5α/pGEX-3X-yvh1 무세포 추출물과 cell debris
lane 6, 7. DH5α/pGEX-2T-yvh1 무세포 추출물과 cell debris
1.3. 무세포 추출물에 대한 PTPase Activity 측정

pNPP를 기질로 사용한 무세포 추출물에 대한 PTPase activity 측정결과 GST-YVH1을 발현시킨 세포의 무세포추출물 pGEX-3X를 이용해 GST만을 발현시킨 세포의 무세포 추출물과 비교해볼 때 약 2배의 specific activity가 측정되었으나 전체적으로 activity가 아주 작게 나와 직접적으로 activity를 비교 논할 수는 없었다.(표 1)

표 1. 각각의 무세포 추출물에 대한 PTPase activity 및 단백질 정량 결과

<table>
<thead>
<tr>
<th></th>
<th>DH5α/pGEX-3X</th>
<th>DH5α/pGEX-3X -yvh1</th>
<th>DH5α/pGEX-2T -yvh1</th>
</tr>
</thead>
<tbody>
<tr>
<td>volume (mL)</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>concentration</td>
<td>13.4</td>
<td>10.4</td>
<td>11.8</td>
</tr>
<tr>
<td>(mg/mL)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total protein</td>
<td>1.34</td>
<td>1.04</td>
<td>1.18</td>
</tr>
<tr>
<td>(mg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>specific activity</td>
<td>0.59</td>
<td>0.97</td>
<td>1.19</td>
</tr>
<tr>
<td>(×10³)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(μmol/mg/min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total activity</td>
<td>0.791</td>
<td>1.01</td>
<td>1.40</td>
</tr>
<tr>
<td>(μmol/min)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.1. YVH1 발현벡터(pT7-7-yvh1)의 제조

Ligation 혼합물을 transformation시켜 얻은 colony를 여러개 배양하여 plasmid를 DNA추출과정을 통해 얻어냈다.

이 plasmid를 BamHI으로 절단하여 약 3700bp의 DNA조각의 존재 유무로 yvh1 gene이 삽입되었는지 확인하였고, 이렇게 확인된 plasmid에 대해 ClaI으로 절단하여 2630bp, 1080bp의 DNA 조각이 나오는 가를 통해 삽입방향을 확인하여 최종적으로 올바른 pT7-7-yvh1(그림 6)을 선별해냈다.

그림 6. pT7-7-yvh1
2.2. SDS-PAGE 분석을 통한 YVH1 발현의 확인

IPTG 최종농도를 0.4, 0.8, 1.2, 1.6, 2.0mM하게 하여 37°C에서 5시간 유도발현시키고 얻은 cell을 곧바로 2×SDS loading buffer로 처리하여 얻은 SDS-PAGE 분석 결과 YVH1에 해당하는 약 42kD의 진한 band를 확인할 수 있었다.(그림 7)

따라서 이 YVH1이 soluble form으로 생성되었는지 아니면 inclusion body로 생성되었는지 확인하기 위해 0.5mM IPTG농도로 37°C에서 5시간 유도발현한 cell로부터 무세포 추출물과 cell debris를 얻어 SDS-PAGE 분석을 실시하였는데, 대부분의 YVH1이 inclusion body 형태로 발현된 것을 확인할 수 있었다.(그림 8)

Inclusion body를 solubilization시키기 위하여 8M urea와 6M Guanidine·HCl로 처리한 결과 6M Guanidine·HCl에서 대부분 solubilization되었으며 50mL배양된 세포로부터 약 5mg의 YVH1을 얻어낼 수 있었다.(그림 9)

IPTG농도 및 발현 온도에 따른 발현형태의 영향을 알아보기 위해 0.2, 0.4mM IPTG농도에 대해 각각 37°C, 30°C, 25°C에서 발현시킨 cell로부터 무세포추출물과 cell debris를 SDS-PAGE분석 결과 IPTG농도와 발현 온도와는 상관없이 모두 inclusion body형태로 YVH1을 얻었으며(그림 10), 무세포 추출물에 대한 PTPase activity측정결과도 YVH1이 발현되지 않았을 경우와 큰 차이가 없었다.
그림 7. 다양한 IPTG농도하에서의 pT7-7-yvh1을 이용한 YVH1 발현에 대한 SDS-PAGE 분석

lane 1. molecular weight standards, from top to bottom: 205, 116, 97, 84, 66, 55, 45, 36, 29, 24
lane 2. IPTG를 가하기 직전에 취한 cell로부터 2×SDS sample buffer로 처리 후 얻은 추출물
lane 3. 최종 IPTG농도가 0.4mM되면 첨가후 5시간 배양된 cell 추출물
lane 4. 최종 IPTG농도가 0.8mM되면 첨가후 5시간 배양된 cell 추출물
lane 5. 최종 IPTG농도가 1.2mM되면 첨가후 5시간 배양된 cell 추출물
lane 6. 최종 IPTG농도가 1.6mM되면 첨가후 5시간 배양된 cell 추출물
lane 7. 최종 IPTG농도가 2.0mM되면 첨가후 5시간 배양된 cell 추출물
그림 8. YVH1 발현형태의 파악을 위한 무세포 추출물과 cell debris에 대한 SDS-PAGE 분석

lane 1. molecular weight standards, from top to bottom: 205, 116, 97, 84, 66, 55, 45, 36, 29, 24
lane 2. IPTG 첨가하기 전에 2×SDS loading buffer로 처리하여 얻은 BL21(DE3)/pT7-7-yvh1 추출물
lane 3. IPTG induction 후 2×SDS sample buffer로 처리하여 얻은 BL21(DE3)/pT7-7-yvh1 추출물
lane 4. IPTG induction 후 얻은 BL21(DE3)/pT7-7-yvh1 무세포 추출물
lane 5. IPTG induction 후 얻은 BL21(DE3)/pT7-7-yvh1 cell debris
lane 6. IPTG induction 후의 BL21(DE3)/pT7-7 추출물
lane 7. IPTG induction 후의 BL21(DE3)/pT7-7 추출물
lane 8. IPTG induction 후 얻은 BL21(DE3)/pT7-7 무세포 추출물
lane 9. IPTG induction 후 얻은 BL21(DE3)/pT7-7 cell debris
그림 9. 6M guanidine·HCl과 8M urea를 이용한 YVH1의 solubilization

lane 1. molecular weight standards, from top to bottom: 205, 116, 97, 84, 66, 55, 45, 36, 29, 24
lane 2. 2×SDS loading buffer로 처리하여 얻은 BL21(DE3)/pT7-7-yvh1 추출물
lane 3. BL21(DE3)/pT7-7-yvh1 무세포 추출물
lane 4. cell debris를 washing한 2% TritonX-100(in bufferA)
lane 5. solubilization처리 후 취한 6M guanidine·HCl 용액
lane 6. 6M guanidine·HCl 용액으로 solubilization처리 후 남은 cell debris
lane 7. solubilization처리 후 취한 8M urea 용액
lane 8. 8M urea 용액으로 solubilization처리 후 남은 cell debris
그림 10. 다양한 온도와 IPTG농도에서 발현시킨 BL21(DE3)/pT7-7-γvh1 무세포 추출물과 cell debris에 대한 SDS-PAGE 분석

lane 1. molecular weight standards, from top to bottom: 205, 116, 97, 84, 66, 55, 45, 36, 29, 24
lane 2, 3. IPTG를 가하기 직전의 무세포 추출물과 cell debris
lane 4, 5. 25℃, 0.2mM IPTG로 발현하고 열은 무세포 추출물과 cell debris
lane 6, 7. 25℃, 0.4mM IPTG로 발현하고 열은 무세포 추출물과 cell debris
lane 8, 9. 37℃, 0.2mM IPTG로 발현하고 열은 무세포 추출물과 cell debris
lane 10, 11. 37℃, 0.2mM IPTG로 발현하고 열은 무세포 추출물과 cell debris
3.1. YVH1 발현벽터(pTACTAC-yvh1)의 제조

Ligation 혼합물을 transformatons시켜 얻은 colony를 여러개 배양하여 plasmid를 추출하였다. 이 plasmid를 HindIII와 NdeI로 절단하여 약 1200bp, 4500bp의 DNA조각이 나타나는 것을 통하여 올바르게 제조된 pTACTAC-yvh1을 얻을 수 있었다.(그림 11)

그림 11. pTACTAC-yvh1
3.2. SDS-PAGE 분석을 통한 YVH1 발현의 확인

IPTG농도와 발현온도에 대한 영향을 같이 살펴보기 위해 IPTG 최종농도를 0.2, 0.4mM계에 하여 37℃, 25℃에서 유도발현시키고 일정시간 간격을 두고 얻은 cell을 곤바로 2×SDS loading buffer로 처리하여 얻은 SDS-PAGE결과 YVH1에 해당하는 약 42kD의 band를 약하게 확인할 수 있었는데 하룻밤 발현시킨 cell에서는 그 band가 사라졌다(그림 12).

따라서 비교적 band가 진하게 보인, IPTG를 가하고 7시간 후에 취한 cell로부터 무세포 추출물과 cell debris를 얻어 SDS-PAGE 분석을 하였는데, 이때에는 무세포 추출물과 cell debris 모두에서 YVH1 band를 확인할 수 없었다.(그림 13) 이러한 현상은 inclusion body의 경우 잘 분해되지 않는다는 점을 감안할 때, YVH1이 soluble form으로 발현되었으나 무세포 추출물을 얻는 과정에서 protease에 의해 분해되어 나타난 것으로 보 수 있다. 무세포 추출물에 대한 PTPase activity측정결과도 YVH1이 발현되지 않았을때와 비교하여 거의 차이가 나지 않았다.
그림 12. 다양한 온도, IPTG농도에서 pTACTAC-yvh1을 통해 발현한 YVH1의 시간에 따른 농도 변화

lane 2. molecular weight standards, from top to bottom: 205, 116, 97, 84, 66, 55, 45, 36, 29, 24

lane 3. IPTG를 가지기 직전의 DH5α/pTACTAC-yvh1 추출물

lane 4~6. 25°C, 0.2mM IPTG 농도하에 3h, 7h, 20h induction 후 얻은 DH5α/pTACTAC-yvh1 추출물

lane 7~9. 25°C, 0.4mM IPTG 농도하에 3h, 7h, 20h induction 후 얻은 DH5α/pTACTAC-yvh1 추출물

lane 10~12. 37°C, 0.2mM IPTG 농도하에 3, 7, 20h induction 후 얻은 DH5α/pTACTAC-yvh1 추출물

lane 13~14. 37°C, 0.4mM IPTG 농도하에 20시간 induction 후 얻은 DH5α/pTACTAC-yvh1 추출물
lane 1. molecular weight standards, from top to bottom: 205, 116, 97, 84, 66, 55, 45, 36, 29, 24
lane 2, 3. 25°C, 0.2mM IPTG 농도 하에서 7h induction시킨 DH5α/ pTACTAC-yvh1 무세포 추출물과 cell debris
lane 4, 5. 25°C, 0.4mM IPTG 농도 하에서 7h induction시킨 DH5α/ pTACTAC-yvh1 무세포 추출물과 cell debris
lane 6, 7. 37°C, 0.2mM IPTG 농도 하에서 7h induction시킨 DH5α/ pTACTAC-yvh1 무세포 추출물과 cell debris
lane 8, 9. 37°C, 0.4mM IPTG 농도 하에서 7h induction시킨 DH5α/ pTACTAC-yvh1 무세포 추출물과 cell debris
4.1. Eukaryotic expression vector인 pYES2를 이용한 YVH1발현 벡터(pYES2-yvh1)의 제조

Ligation 혼합물을 transformation시켜 얻은 colony를 여러개 배양하여 plasmid를 추출하였다. 이 plasmid를 EcoRI로 절단하여 5900bp, 1200bp DNA조각의 생성여부를 통해 yvh1 gene의 삽입여부를 확인하고, 이렇게 얻은 plasmid를 XhoI로 절단하여 6400bp, 900bp DNA조각의 생성여부를 통해 방향성을 확인하고 최종적으로 올바르게 제조된 pYES2-yvh1을 얻을 수 있었다.(그림 14)

그림 14. pYES2-yvh1
4-2. SDS-PAGE분석을 통한 YVH1발현의 확인

Protein folding system이 보다 잘 갖춰진 진핵생물인 yeast (BJ5464)를 발현주로 하여 galactose를 2%로 보고 발현하여 positive control로 SEP1과 함께 YVH1 발현을 유도하고 일정시간 간격으로 cell을 취하여 파쇄한 후 무세포추출물을 얻어 SDS-PAGE분석 결과 SEP1만이 발현된 것을 확인 할 수 있었다.(그림 15)
그림 15. galactose로 induction 후 시간변화에 따른 YVH1과 SEP1의 발현 여부에
대한 SDS-PAGE 분석

lane 1. molecular weight standards, from top to bottom: 205, 116, 97, 84, 66, 55, 45, 36, 29, 24
lane 2. galactose로 induction하기 직전의 BJ5464/pYES2-yvh1 무세포 추출물
lane 3~6. galactose로 4h, 6h, 8h, 22h induction 후 얻은 BJ5464/pYES2-yvh1
무세포 추출물
lane 7. galactose로 induction하기 직전의 BJ5464/pRDK-sep1 무세포 추출물
lane 8~11. galactose로 4h, 6h, 8h, 22h induction 후 얻은 BJ5464/pRDK-sep1
무세포 추출물
IV. 결 론

Activity를 갖는 soluble form의 YVH1을 발현하기 위해 다양한 특성을 가지는 여러 prokaryotic expression vector와 YVH1을 위한 더 나은 protein folding system을 갖는 yeast를 발현 숙주로 하기 위해 yeast expression vector를 사용하여 YVH1의 발현을 시도하였다.

pGEX-3X-yvh1의 경우 GST-YVH1으로 발현된 것이 아니라 GST만 발현되었는데 이는 DNA조작과정에 있어 open reading frame이 어디에선가 잘못되어 나타난 것으로 생각할 수 있다. 또한 pGEX-2T-yvh1을 통해 GST-YVH1을 발현한 경우 cell 자체를 곧 바로 처리하였을때는 GST-YVH1의 발현을 확인할 수 있었으나 무 세포 추출물을 얻은 후 분석한 결과에 따르면 상당량이 분해된 사실을 알 수 있었다. 이는 Guan동에 의해 행해졌던 실험에서도 나타난 현상인데, pTACTAC-yvh1을 통해 발현한 경우에도 같은 현상을 나타내었다.

또한 YVH1은 본래 yeast protein이므로 yeast 자체를 발현 숙주로 하기 위해 eukaryotic vector를 사용하여 YVH1의 발현을 시도하였다. 이는 Guan동에 의해 행해진 실험에서 비록 단백질 단계에서는 확인이 되지 않았으나 nitrogen 공급원이 모자란 상황에서 yeast를 배양하면 YVH1의 mRNA가 급격히 증가하는 현상이 보고되었는데, 이러한 상황을 미루어 보아 YVH1의 증가가 yeast의 생
명에는 지장을 주지 않을 것이라는 판단하에서 행해진 실험이었다. 또한 YVH1이 yeast에서 발견된 단백질이므로 folding에 가장 적합한 환경을 제공할 것이라는 점도 이 실험을 하게 된 배경이었다. 하지만 결과적으로 빠를 때 control로 사용한 SEP1은 발현되었으나, YVH1은 발현되지 않았다.

Lac, trp promoter을 사용하는 pTACTAC vector와는 달리 T7 promoter을 사용하는 pT7-7 vector를 이용한 YVH1의 발현에 있어서 50mL의 cell에서 약 5mg에 달하는 inclusion body형태의 YVH1을 얻을 수 있었다. inclusion body의 경우 분해가 되지 않는다는 점과 이렇게 많은 양의 단백질을 얻을 수 있다는 점을 볼 때 매우 유익한 현상으로 이해할 수 있다. 또한 guanidine・HCl로 solubilization시켰을 때 상당히 정체된 상태로 YVH1을 얻었는데, 이는 일반적으로 발현된 단백질을 정제하는 과정에서 단백질의 많은 손실이 따르다는 점과 정체가 잘 안될 수도 있다는 점을 감안하면 중요한 장점으로 부각된다. 그러나 guanidine・HCl로 solubilization시켰다는 것은 단백질을 denature시켰다는 의미로 활성을 가진 원전한 형태의 단백질을 얻기 위해서는 refolding의 과정을 거쳐야 하는 단점을 가지고 있다. 따라서 앞으로 원전한 형태의 YVH1을 얻기 위하여 inclusion body에 대한 refolding 과정과 발현 또는 무세포 추출물을 얻는 과정에서 발생하는 단백질 분해 현상을 방지하기 위한 연구가 더 진행되어야 할 것으로 판단된다.
V. 참고문헌

감사의 글

“석사과정 2년, 상당히 짧은 기간이니 열심히 실험하기 바란다.”라는 한 선배의 말이 가슴 깊이 다가오는 때가 바로 지금이 아닌가 생각이 됩니다. 대학원 생활을 시작할 때는 뭐든지 해낼 수 있을 것 같았고 그래서 나름대로 열심히 임했었던 (?) 2년, 지금 생각해 보면 왜이리 부족하고 아쉬운게 많은지... 그러나 한편으로는 감사해야할 많은 만남이 있었습니다.

가족같이 놀 한결같은 믿음으로 지켜봐주시며 학문과 연구에 깊이와 홍미를 더해주신 조정진 지도 교수님께 감사와 더불어 더욱더 열심히 하는 모습을 보여드리지 못한 모습에 최송한 마음을 금할 수 없습니다. 학부과정 때 공부할 수 있는 여건과 인간적인 만남을 얻어주신 최영식 교수님, 부족한 논문을 너무나도 꿈꿀지 지켜봐 주신 지대윤, 정원조 교수님 그리고 많은 기대와 격려로 대해 주시던 화학과 여러 교수님께 이 자리로 통해 감사의 글을 올립니다.

최고 선배로 좋은 선을 보여주셨던 옳은 모습이 너무나 보기에 좋은 미움이, 참으로 부담없이 살에 대한 진솔한 이야기를 나눌 수 있었던 민수형과 준필이, 2년 가까이 같이 생활하면서 그리고 지금까지도 물심양면으로 많은 도움을 준 성준이와 최영이, 입학동기라는 이유 하나만으로 많은 짜증과 다툼했던 마음을 느낄 수 있게 받아주었던 미숙이와 선명이, 일요일의 모든 준비사항을 도맡아 처리해주시서 실험이 많은 도움을 주었던 동기, 어떠한 상황에서도 늘 익을을 잃지 않는 모습이 좋은 선서, 그리고 늘 든든한 우리 기운이, 미화,
기.Filters, 수민이에게 또한 감사하는 마음을 전합니다.

택수형, 구일이, 민철에도 잊지 못할 것입니다. 학부때 같은 실험실에서 공부하면서 참 많이도 어울렸었던 선배와 후배들입니다. 늘 가까이 있으면서 많은 대화를 나누었고, 연구와 학문에 있어 그 노력하는 모습으로 많은 도전을 주었던 친구 벨씨. 졸업 후에도 꾸준한 만남을 통해 우정을 돈독히 해준 Chem 97 졸업동기들.

친 형제, 자매와 놓고 볼지라도 결코 손색이 없는 12기 친구들, 허들때나 기뻐 때 늘 함께 있었던 친구들입니다. 신길이, 정우, 영주, 중섭이, 진수, 철수, 성호, 원석이, 성욱이, 태연이, 진은이, 대웅이, 수현이, 명환이 그리고 한호...

막내인 저를 위해 정말 끝없이 지켜봐주고 도와준 성심이 누나, 성주, 성은이 누나와 친형처럼 늘 대해주신 자형들, 그리고 귀여운 조카들.

‘아낌없이 주는 나무’라는 ‘책에서나 볼수 있는 사랑’을 풍성히 배풀어 주시며 늘 기도해주시는 어머니, 언제나 다정하게 저에 대한 믿음을 가지고 기도해 주시는 장모님, 하나뿐인 그래서 더 잘해주고 싶은 처남 은석이 그리고 무엇보다 형들과 어려운 상황에서도 나를 밀어주고 한결같이 애정이 가득 담긴 눈으로 지켜봐주는데, 늘고마한 생각하는 사랑하는 나의 반쪽 수진이에게 정말 감사의 마음을 전합니다. 가끔씩 그리움에 눈물이 흘릴때도 있지만, 친구로서 저를 늘 지켜보고 계실거라 생각하며 아버지께 험을 언릅니다.

마지막으로 제 삶을 이끌어 주시고 지탱해 주시는 미쁘신 하나 넘어 무엇보다 감사드립니다.