저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

- 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건을 명확하게 나타내어야 합니다.
- 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer
Numerical Simulation of Supersonic Inlet Flow
Numerical Simulation of Supersonic Inlet Flow
이 논문을 괴인근의 석사학위논문으로 인정함

2009년 2월

주심 김 범 수

부심 이 승 수

위원 노태성
목차

그림 목차 ... ii
표 목차 ... iii
초록 ... iv
Abstract ... v

1. 서론 .. 1
2. 수치 해석 기법 .. 3
 2.1. 지배방정식 .. 3
 2.2. 2-방정식 난류 모델 .. 4
 2.2.1. $q - \omega$ 모델 ... 4
 2.2.2. $k - \omega$ BSL/SST 모델 5
 2.3. 국소 에조건화 Navier–Stokes 방정식 7
2.4. 수치해석기법 .. 8
 2.4.1. 공간이산화 ... 8
 2.4.2. Roe’s 근사 리만해 9
 2.4.3. 고차의 MUSCL .. 12
 2.4.4. 점성항의 공간이산화 12
 2.4.5. 수치 적분 방법 .. 13
 2.4.5.1. 정상유동 해석 13
 2.4.5.2. AF-ADI(Approximate Factorization) 14
 2.4.5.3. 비정상유동 해석-이중시간적분법 15
 2.5. Bleed 경계 조건 ... 17
3. 수치해석 결과 및 프로그램 검증 19
 3.1. 축대칭 원추(Cone)에서의 흐름 해석 19
 3.2. 축대칭 범프(Bump)에서의 흐름 해석 22
 3.3. Bleed 영역이 있는 평판 위의 초음속 흐름 해석 26
 3.4. 경사충격파와 Bleed 영역이 있는 평판 위의 초음속 흐름 해석 30
4. 초음속 흡입구 유동의 수치 모사 33
 4.1. Bleed 영역이 없는 초음속 흡입구 유동의 수치 모사 33
 4.1.1. 초음속 흡입구 유동의 3단계 해석 방법 33
 4.1.2. 결과 비교 ... 35
 4.2. Bleed 영역을 포함한 초음속 흡입구 유동의 수치 모사 37
 4.2.1. 해석 조건 및 방법 37
 4.2.2. 수치 모사 결과 및 비교 38
5. 결론 및 향후 과제 .. 42
참고 문헌 ... 43
그림 목차

그림 1. Auxiliary cell ... 13
그림 2. Sonic coefficient data[2] .. 17
그림 3. 원추(cone)의 121×81 격자계 ... 19
그림 4. 수렴특성 ... 20
그림 5. 본 연구의 마하수 contour (=2.35) 21
그림 7. 범프(Bump)의 기하학적 형상 .. 22
그림 8. 범프(bump)근처의 계산 격자계 22
그림 9. 수렴특성비교 .. 23
그림 10. 속도 분포(Velocity Profile) 비교 24
그림 11. 난류 운동 에너지(Turbulent Kinetic Energy) 분포 비교 .. 24
그림 12. 표면 분포 비교 .. 25
그림 13. 격자계(95×50)와 경계 조건 26
그림 14. Velocity profile 비교(case1) .. 27
그림 15. Velocity profile 비교(case2) .. 27
그림 16. Slater et al.[3]의 마하수 contour 29
그림 17. 본 연구의 마하수 contour .. 29
그림 18. 격자계(158×80) 및 경계 조건 30
그림 19. Bleed 영역 근처에서의 벽면 압력 분포 비교(Willis et al.[17]) 31
그림 20. Bleed 영역 근처에서의 벽면 압력 분포 비교(Slater et al.[3]) 31
그림 21. 속도 분포(velocity profile) 비교 32
그림 22. 1단계: 초음속 출구 경계 조건 34
그림 23. 2단계: 아음속 출구를 위한 흐름의 초기화 34
그림 24. 3단계: 고정된 배압의 아음속 출구 조건 34
그림 25. Slater et al.[3]의 마하수 Contour 36
그림 26. 본 연구의 마하수 Contour 36
그림 27. Bleed 영역과 흡입구 목 부분 격자계 37
그림 28. 초임계(Supercritical condition) 40
그림 29. 임계(Critical condition) ... 40
그림 30. 아임계(Subcritical condition) 40
그림 31. Cane curve 비교 .. 41
표 목차

표 1. Analytical Solution과의 비교 ... 20
표 2. Bleed 영역의 Configuration ... 38
초 록

Bleed 영역이 있는 흡입구 주위의 초음속 유동에 대한 수치 모사를 수행하였다. 이를 위하여 축대칭 RANS(Reynolds Averaged Navier-Stokes)방정식과 2-방정식 난류 모델 방정식을 기반으로 한 기존의 코드에 bleed 경계 조건을 적용하였다. 개발한 코드에 적용한 bleed 경계 조건은 constant-pressure bleed 모델로 이는 공기 실(plenum chamber) 내의 압력이 일정하다고 가정한 모델이다. 본 논문에서는 개발한 코드에 적용한 bleed 경계 조건을 검증하기 위해 bleed 영역이 있는 평판에서의 uniform 유동과 경사충격파가 있는 유동을 해석하여 실험치 및 수치 해석 결과 비교하였으며 축대칭 초음속 흡입구의 유동 해석에 적용하였다.

Key Words: Axisymmetric Supersonic Inlet(축대칭 초음속 흡입구)
Bleed Boundary Condition(Bleed 경계 조건)
Numerical Simulation(수치 모사)
RANS(Reynolds Averaged Navier-Stokes) 방정식
2-equation Turbulence Model(2-방정식 난류 모델)
Abstract

In this thesis, numerical simulation of the flow in axisymmetric supersonic inlet with bleed regions was performed. To the simulation, a bleed boundary condition was applied to the existing code which solves the axisymmetric RANS(Reynolds Averaged Navier–Stokes) equations and 2-equation turbulence model equations. The bleed boundary condition is constant-pressure bleed model which assumes the pressure in the plenum chamber to be constant. The bleed boundary condition was verified and validated by comparing the computational results against the experimental data and other computational results for flow over bleed region on a flat plate and an oblique shock with a bleed region on flat plate. Using the developed code, numerical simulation was performed for the flow in a Mach 3.0 axisymmetric, mixed compression inlet with multiple bleed regions.

Key Words: Axisymmetric Supersonic Inlet
Bleed Boundary Condition
Numerical Simulation
RANS(Reynolds Averaged Navier–Stokes) equations
2-equation Turbulence Model
1. 서 론

가스터빈 엔진이나 램제트(Ramjet) 엔진과 같은 공기 흡입 엔진을 운용하는 비행체의 개발에서 흡입구는 비행체의 성능을 결정하는 주요 요소이다. 흡입구는 모든 비행 조건에서 압력 회복의 최대화, 안정적인 공기 흐름 유도, 엔진에 적절하고 균일한 유량 제공, 항력과 소음의 최소화 등의 기능을 수행할 수 있도록 설계되어야 한다.[1] 특히, 초음속 비행에서 운용하는 흡입구의 경우에는 다양한 운용 조건에 맞는 고정된 한 가지 형상이 존재하지 않아 형상이 복잡하고 Terminal Shock의 안정성과 경계층 효과, 충격파와 경계층 간의 상호 작용 등으로 인해 해석이 쉽지 않다. 그러므로 실험적인 방법만으로는 초음속 흡입구의 해석에 한계가 있으며 전산 유체역학은 이를 보완해 줄 가장 적합한 도구라 할 수 있다.

초음속 흡입구 유동을 해석하기 위해 주요 특징을 알아보면 다음과 같다.

1) 비정상 유동
초음속 흡입구에서는 충격파와 난류 경계층의 상호 작용, 램제트(ramjet)의 부스터(booster) 분리나 cowl의 이동으로 인한 형상 변화, 연소실(combustion chamber)의 압력 섭동(fluctuation) 등의 이유로 비정상 유동이 발생한다.

2) 충격파의 불안정성
초음속 흡입구 목(throat)에서 발생하는 수직 충격파는 비행 조건이나 연소실의 조건에 따라 이동하는 불안정성을 가지고 있다. 수직 충격파가 흡입구 목을 벗어나 cowl 밖으로 나가게 되면 흡입구는 엔진이 작동하지 못하는 ‘unstart’ 상태가 된다. ‘unstart’ 상태에서는 흡입구로의 유입 유량이 감소하고 전압력의 손실이 커지며 항력이 증가한다. 또한 수직 충격파가 cowl 근처로 이동하면 충격파 시스템이 진동하는 공기역학적 불안정성인 Buzz 현상이 일어날 수도 있다.

3) 초음속과 저아음속 유동의 혼재
초음속 흡입 구 내에는 초음속과 저아음속의 유동이 혼재된다. 램제트 엔진의 booter phase 가 한 예이다. 램제트 엔진은 운용할 수 있는 속도에 도달하기까지 부스터를 이용하여 가속하게 된다. 이 때, 엔진의 내부는 부스터로 막혀 있어 저아음속 유동이 존재하게 된다.
그리므로 초음속 흡입구를 해석하기 위해서는 비정상 난류 압축성 유동을 해석할 수 있는 Navier–Stokes 코드의 개발이 필요하다. 또한 초음속과 저아음속 영역에 대한 해석이 동시에 가능해야 하며 bleed 영역과 engine-face에서는 유량 경계 조건을 적용할 수 있어야 한다. 본 연구실에서 보유하고 있는 코드는 이중 시간 적분법(dual time stepping)과 예조건화가 적용되어 있어 비정상 유동 및 저아음속 유동의 해석이 가능하며 측정형 흡입구의 RANS(Reynolds Averaged Navier–Stokes)방정식과 2-방정식 난류 모델 방정식을 사용하였기 때문에 측정형 측정의 해석도 가능하다. 이에 본 논문에서는 기존의 코드를 bleed 영역을 포함한 흡입구 내의 유동의 해석이 가능하도록 확장하였으며 초음속 흡입구 유동의 수치 모사도 수행하였다.

초음속 흡입구의 수치모사를 수행하기 전에 측정형 비점성 문제와 점성 문제를 통해 개발된 코드의 측정형 난류 압축성 부분을 검증하였으며 개발된 코드에 적용된 bleed 경계 조건을 검증하기 위해서 bleed 영역이 있는 평판에서의 uniform 유동과 경사충격과가 존재하는 유동에 대해서 해석하고 실험치 및 타 연구의 수치 해석 결과와 비교하였다. 그리고 개발된 코드를 이용하여 여러 개의 bleed 영역이 존재하는 혼합 압축형태의 측정형 초음속 흡입구의 수치 모사를 수행하고 실험치와 비교하였다.
2. 수치 해석 기법

2.1. 지배방정식

압축성 유동의 지배 방정식인 RANS(Reynolds Averaged Navier–Stokes)의 2차원 방정식과 2-방정식 난류 모델을 축대칭 형태로 변형하면 다음과 같이 쓸 수 있다.[4]

\[
\frac{\partial W}{\partial t} + \frac{\partial E}{\partial x} + \frac{\partial F}{\partial y} + I \frac{\partial E_v}{\partial x} + I \frac{\partial F_v}{\partial y} + I G_v + S = 0
\]

(1)

\(I=0\) 일 때는 2차원 형태로 \(W\)는 보존형 유동 변수 벡터(conservative flow variable vector)를 \(E\)와 \(F\)는 각각 \(x\)방향과 \(y\)방향의 비점성 유속 벡터(inviscid flux vector), \(E_v, F_v\)는 각방향의 점성 유속 벡터(viscous flux vector)를 나타낸다. \(I=1\) 일 때는 축대칭 형태의 방정식으로 \(G, G_v\)는 2차원 좌표계에서 원통형 좌표계로 변환하면서 생긴 항들이다.

\[
W = \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ e \\ \rho s_1 \\ \rho s_2 \end{pmatrix}, \quad E = \begin{pmatrix} \rho u \\ \rho u^2 + p \\ \rho uv \\ (e+p)u \\ \rho us_1 \\ \rho us_2 \end{pmatrix}, \quad F = \begin{pmatrix} \rho v \\ \rho uv \\ \rho v^2 + p \\ (e+p)v \\ \rho vs_1 \\ \rho vs_2 \end{pmatrix}, \quad G = \begin{pmatrix} \rho w \\ \rho wu \\ \rho w^2 + p \\ (e+p)w \\ \rho ws_1 \\ \rho ws_2 \end{pmatrix}
\]

\(E_v = \begin{pmatrix} 0 \\ \tau_{xx} \\ \tau_{xy} \\ \left(\mu_m + \sigma_s \mu_t\right) \frac{\partial s_1}{\partial x} \\ \left(\mu_m + \sigma_s \mu_t\right) \frac{\partial s_2}{\partial x} \end{pmatrix}, \quad F_v = \begin{pmatrix} 0 \\ \tau_{xy} \\ \tau_{yy} \\ \left(\mu_m + \sigma_s \mu_t\right) \frac{\partial s_1}{\partial y} \\ \left(\mu_m + \sigma_s \mu_t\right) \frac{\partial s_2}{\partial y} \end{pmatrix}, \quad G_v = \begin{pmatrix} 0 \\ \tau_{xy} \\ \tau_{yy} - \tau_{\theta \theta} \\ \left(\mu_m + \sigma_s \mu_t\right) \frac{\partial s_1}{\partial y} \\ \left(\mu_m + \sigma_s \mu_t\right) \frac{\partial s_2}{\partial y} \end{pmatrix}, \quad S = \begin{pmatrix} 0 \\ 0 \\ 0 \\ S_1 \\ S_2 \end{pmatrix}
\]

(2)

\(\tau_{xx} = \mu \left(\frac{\partial u}{\partial x} - \frac{2}{3} \nabla \cdot v \right), \quad \tau_{yy} = \mu \left(\frac{\partial v}{\partial y} - \frac{2}{3} \nabla \cdot v \right)\)

\(\tau_{xy} = \tau_{yx} = \mu \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right), \quad \tau_{\theta \theta} = \mu I \left(\frac{2}{y} \frac{\partial v}{\partial y} - \frac{2}{3} \nabla \cdot v \right)\)

(3)
\[\nabla \cdot \vec{v} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{I}{y}, \quad \mu = \mu_m + \mu_t \]

Energy 방정식에 나타나는 \(\Omega \)는 다음과 같이 정의된다. 또한 laminar viscosity는 Sutherland 방정식으로 계산된다.

\[
\mu_m = 1.458 \times 10^{-6} \frac{T^{3/2}}{T+110.4}
\]

\[
\Omega_x = u\tau_{xx} + v\tau_{xy} + k \frac{\partial T}{\partial x}
\]

\[
\Omega_y = u\tau_{yx} + v\tau_{yy} + k \frac{\partial T}{\partial y}
\]

이상기체의 상태방정식은 다음과 같다.

\[
p = (\gamma - 1) \left[1 - \frac{1}{2} \rho (u^2 + v^2) \right] = (\gamma - 1)(e - \rho Q), \quad p = \rho T
\]

여기에서

\[
Q = \frac{1}{2} (u^2 + v^2), \quad k = C_p \left[\frac{\mu_m}{Pr} + \frac{\mu_t}{Pr_t} \right], \quad C_p = \frac{\gamma}{\gamma - 1}
\]

2.2. 2-방정식 난류 모델

2.2.1. \(q-\omega \) 모델

본 논문에서는 Coakley의 \(q-\omega \) 난류 모델을 적용하였다. Coakley의 \(q-\omega \) 난류 모델에서는 turbulent velocity scale \(q \)와 specific dissipation rate \(\omega \)에 관한 이동방정식을 이용하여 난류 점성계수를 예측한다. \(q-\omega \) 모델의 경우 보존형 변수 벡터에 포함되어 있는 모델 변수는 다음과 같다.

\[
s_1 = q = \sqrt{k}, \quad s_2 = \omega = \frac{\epsilon}{k}
\]

난류 점성계수는 Komogorov relation으로부터

\[
\mu_t = C_q D_q \frac{\rho q^2}{\omega}
\]

벽면 근처에서의 감쇠계수는 다음과 같이 주어진다.

\[
D_q = 1 - \exp(-0.022 R_q), \quad R_q = \frac{\rho q y}{\mu_m}
\]
여기서 y는 가장 가까운 벽면까지의 수직 거리이다. 원천항은 다음과 같이 주어진다.

$$S_1 = C_{q1} \left(C_{\mu} D_i \frac{S}{\omega^2} - \frac{2}{3} \frac{D}{\omega} - 1 \right) \rho \omega q$$

$$S_2 = \left[C_{o1} \left(C_{\mu} \frac{S}{\omega^2} - C_{o3} \frac{D}{\omega} \right) - C_{o2} \right] \rho \omega^2$$

또한,

$$S = \left(\frac{\partial u_i}{\partial x_i} + \frac{\partial u_j}{\partial x_j} \right) \frac{\partial u_k}{\partial x_k} - \frac{2}{3} D^2, \quad D = \frac{\partial u_k}{\partial x_k}$$

모델계수는 다음과 같다.

$$C_{o1} = 0.5 D_q + 0.055, \quad C_{q1} = 0.5, \quad C_{o2} = 0.833, \quad C_{o3} = 2/3$$

$$\sigma_q = 1/0.8, \quad \sigma_{\omega} = 1/2.0, \quad C_{\mu} = 0.09$$

$q-\omega$ 모델은 $k-\epsilon$에 비해 높은 수치적 안정성을 가지고 있으며 다른 2-방정식 모델들과는 달리 자유류의 u, q, ω 값을 상수로 두고 계산을 시작할 수 있다.[5,6]

2.2.2. $k-\omega$ BSL/SST 모델

Menter에 의해 개발된 $k-\omega$ BSL/SST(Base Line/Shear-Stress Transport) 모델을 사용하였다. $k-\omega$ BSL/SST 모델의 경우 모델 변수는 다음과 같이 정의된다.

$$s_1 = k, \quad s_2 = \omega = \frac{\epsilon}{k}$$

$k-\omega$ BLS/SST 모델의 원천항은 다음과 같이 주어진다.

$$S_1 = \tau_{ij} \frac{\partial u_j}{\partial x_j} - \beta \rho \omega k$$

$$S_2 = \frac{\alpha \omega}{k} \tau_{ij} \frac{\partial u_j}{\partial x_j} - \beta \rho \omega^2 + 2(1 - F_1) \rho \sigma_{o2} \frac{1}{\omega} \frac{\partial}{\partial x_j} \frac{\partial \omega}{\partial x_j}$$

각 난류 상수들은 blending function F_1에 의해서 다음과 같이 정의된다.

$$\phi = F_1 \phi_1 + (1 - F_1) \phi_2$$

$\phi_1 : k-\omega$ 난류모델 상수

$$\beta^* = 0.09, \quad \sigma_{k1} = 0.5, \quad \sigma_{k2} = 0.5, \quad \beta_1 = 0.075, \quad \alpha_1 = \frac{\beta_1}{\beta^*} - \frac{\sigma_{o2} \kappa^2}{\sqrt{\beta^*}}$$

$\phi_2 : k-\epsilon$ 난류모델 상수
\[
\beta^* = 0.09, \quad \sigma_w = 1, \quad \sigma_{w2} = 0.856, \quad \beta_2 = 0.0828, \quad \alpha_2 = \frac{\beta_2}{\beta^*} - \frac{\sigma_w \kappa^2}{\sqrt{\beta^*}}, \quad \kappa = 0.41
\]
(18)

Blending function, \(F_1 \)은 다음과 같이 주어진다.

\[
F_1 = \tanh \left[\min \left(\max \left(\frac{\sqrt{k}}{\beta' y}, \frac{500 \nu}{y^2 w} \right) \right)^4 \right]
\]
(19)

여기에서 \(y \)와 \(\text{CD}_{yw} \)는 각각 벽면까지의 최단거리와 교차 확산함을 나타낸다. \(\text{CD}_{yw} \)는 다음과 같이 정의된다.

\[
\text{CD}_{yw} = \max \left[2 \rho \sigma_{w2} \frac{1}{w} \frac{\partial k}{\partial x_j} \frac{\partial w}{\partial x_j} ; 10^{-20} \right]
\]
(20)

난류방정식의 난류 점성계수는 BSL 모델과 SST모델은 각각 다음과 같이 주어진다.

BSL : \(\nu_t = \frac{\mu_t}{\rho} = \frac{k}{\omega} \)
(21)

SST : \(\nu_t = \frac{\mu_t}{\rho} = \frac{0.31 k}{\max \left(0.31 \omega ; \Omega F_2 \right)} \)
(22)

여기에서 \(\Omega \)는 vorticity의 절대 값을 나타내며 \(F_2 \)는 다음과 같이 정의된다.

\[
F_2 = \tanh \left[\max \left(\frac{2 \sqrt{k}}{\beta' y}, \frac{500 \nu}{y^2 w} \right) \right]^2
\]
(23)

\(k-\omega \) 모델은 벽 근처에서 감쇠(damping) 함수나 벽으로부터의 거리 없이 적용이 가능하며 자유류의 난류와 표면의 거칠기, 유량의 주입(mass injection)을 쉽게 모델에 포함할 수 있다.[7] 그러나 \(k-\epsilon \)모델과는 달리 자유류 특성에 아주 민감하게 적용하는데 주의가 필요하다. 이에 \(k-\omega \)모델과 \(k-\epsilon \)의 장점을 모두 갖춘 \(k-\omega \) BSL/SST 모델이다.[8] 경계층 내에서 탁월한 성능을 갖고 있으나 자유류의 \(k, \omega \)값에 영향을 많이 받는 \(k-\omega \) 모델은 벽면 근처에 사용하고, 자유 전단층(free shear layer)과 outer region에서 해석 결과가 좋으나 벽면 근처에서 수치적으로 불안정한 특성을 갖는 \(k-\epsilon \)를 그 밖에 영역에서 사용하는 hybrid 난류 모델이다.
국소 예조건화 Navier-Stokes 방정식

국소 예조건화 기법(local preconditioning method)은 저속에서의 고유치를 보정하고 수렴의 경직성을(stiffness) 문제를 해결하기 위한 예조건화 기법이다. 국소 예조건화 기법은 예조건화 행렬이 국소적 유동 변수(local flow variable)를 사용하기 때문에 정체점(stagnation point)을 포함하는 유동을 해석하는 경우에 특이성(singularity)에 의한 수치 불안정성을 보이기 때문에 특이성 제거를 위한 제한자 역할을 하는 변수를 도입한다. 이번에 개발한 코드에는 Choi와 Merkle가 개발한 예조건자(preconditioner)를 확장하여 사용한 Weiss와 Smith[9]의 국소 예조건화 기법을 적용하였다.

국소 예조건화된 Navier-Stokes 방정식의 최종 형태는 예조건화 행렬을 시간 미분항에 곱해준 형태를 갖는다.

\[
\Gamma \frac{\partial Q_p}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial E}{\partial y} = \frac{\partial E_v}{\partial x} + \frac{\partial F_v}{\partial y} + S
\]

\[
Q_p = \begin{pmatrix}
 (p) \\
 u \\
 v \\
 T
\end{pmatrix}, \quad \Gamma = \begin{pmatrix}
 \Theta & 0 & -\frac{\rho}{T} & 0 & 0 \\
 \Theta u & \rho & 0 & -\frac{\rho u}{T} & 0 \\
 \Theta v & 0 & \rho & -\frac{\rho v}{T} & 0 \\
 \Theta H - 1 & \rho u & \rho v & -\frac{\rho s_1}{T} & \rho \\
 \Theta s_1 & 0 & 0 & -\frac{\rho s_1}{T} & \rho \\
 \Theta s_2 & 0 & 0 & -\frac{\rho s_2}{T} & \rho \\
\end{pmatrix}, \quad S = S + \frac{I}{y}(G_v - G)
\]

이것은 예조건화 되지 않은 Navier-Stokes 방정식에 Jacobian \(\partial W/\partial Q\)의 변환행렬을 곱하고 메개변수 \(\Theta\)를 도입하여 \(\Gamma\)를 구성한다. \(Q\)는 원시형 유동 변수 벡터(primitive flow variable vector)이고 나머지 비점성 유속 벡터와 점성 유속 벡터는 변하지 않는다. \(\Lambda\)는 Weiss와 Smith의 예조건화 행렬이다.

\[
\Theta = \left(\frac{1}{U_r^2} - \frac{\rho_T}{\rho C_p} \right) = \left(\frac{1}{U_r^2} + \frac{1}{C_p T} \right)
\]

\[
U_r = \min[c, \max(|u|, KU_{cut}, \frac{\mu}{\rho \Delta d}, \sqrt{\frac{|p|}{\rho}})]
\]

\[where, \quad K = 0.5 \quad U_{cut} = \min(U_{\infty}, c_{\infty}) \quad p^\prime = p - p_{\infty}\]

\(U_r\)은 초음속 유동영역에서 예조건화 되지 않은 기본 지배방정식의 고유치로 돌아가게 하는 역할과 정체점에서 일어날 수 있는 불안정성을 제거하기 위한 제한자 역
할을 하는 기준속도(reference velocity)이다. 기준속도의 각 항들을 살펴보면 \(K\)는 global cut-off를 위해 고정된 임의의 상수이고 \(U_{cut} = \min(u_{\infty}, c_{\infty})\)는 무한 물체 (blunt body) 유동과 같은 국지적으로 아웃쪽 영역을 포함하는 초음속 유동 해석시 기준 속도를 최적화 하는 항이다. \(\frac{\mu}{\rho \Delta d}\)는 낮은 레이놀즈수의 점성 유동에서 국소 확산 속도(local diffusion velocity)이고 기준속도는 이것보다 작아져야 안아야 한다.
\(\sqrt{\frac{|p|}{\rho}}\)는 경계점에서 압력슷동(pressure perturbation)이 중폭되지 않도록 제한하여 수치적 안정성에 기여하는 항이다.

2.4. 수치해석기법

2.4.1. 공간이산화

앞의 예조건화된 Navier–Stokes 방정식은 간단히 다음과 같이 쓸 수 있다.
\[
\Gamma \frac{dQ_v}{dt} + \nabla \cdot \vec{F} = \nabla \cdot \vec{F}_v + S
\]
(28)
여기에서 generalized inviscid flux vector와 viscous flux vector는 다음과 같이 정의된다.
\[
\vec{F} = i\vec{E} + j\vec{F}_v, \quad \vec{F}_v = i\vec{E}_v + j\vec{F}_v
\]
(29)
이 식을 그 크기가 작은 computational cell에 대하여 적분하고, divergence Theorem을 적용하면 다음과 같다.
\[
\Gamma \frac{d}{dt} \int_V Q_v dt - \int_S W \vec{\xi} \cdot \hat{n}dS + \int_S \vec{F} \cdot \hat{n}dS = \int_S \vec{F}_v \cdot \hat{n}dS + \int_S \vec{\xi}dV
\]
(30)
여기에서 표면의 단위 수직 벡터와 computational cell의 속도는 다음과 같다.
\[
\hat{n} = \hat{i}n_x + \hat{j}n_y, \quad \vec{\xi} = \hat{i} \xi_x + \hat{j} \xi_y
\]
(31)
Cell의 크기가 작기 때문에 다음과 같이 근사적으로 쓸 수 있다.
\[
\Gamma \frac{d(VQ_v)}{dt} + \sum \vec{F}_v \Delta S = \sum \vec{F}_v \Delta S + V \vec{S}
\]
(32)
여기에서 전산 격자(computational cell)의 표면에 대하여 합을 수행한다. 또한, 그 면에 수직한 비점성 유속 벡터와 점성 유속 벡터는 다음과 같이 된다.
여기에서 $k = n_x u + n_y v - \xi_t$는 cell의 표면에 수직한 유동의 속도 성분이고 $\xi_t = \xi_x n_x + \xi_y n_y$는 cell 이동속도의 표면에 수직한 속도 성분이다.

단위 수직 vector의 방향을 index가 증가하는 방향으로 다시 정의하면, 유한 체적법으로 공간 미분항을 이산화한 준 이산화 방정식이 된다.

\[
\begin{align*}
\frac{d}{dt} \left(V Q_p \right) + R & = 0 \\
\end{align*}
\]

여기에서

\[
R = \left\{ \left(\bar{F} \Delta S \right)_{i+1/2} - \left(\bar{F} \Delta S \right)_{i-1/2} \right\}
- \left\{ \left(\bar{F}_i \Delta S \right)_{i+1/2} - \left(\bar{F}_i \Delta S \right)_{i-1/2} \right\} - \bar{S} V
\]

2.4.2. Roe’s 근사 리만해

준 이산화한 방정식에서 격자 경계면에서의 수치 유속을 구하는 기법으로 Roe의 근사 리만해를 이용해서 비정성 유속 벡터를 계산한다.

\[
\bar{F}_{i+1/2} = \frac{1}{2} (\bar{F}_i + \bar{F}_{i+1} - \Gamma \bar{A}_i \Delta Q_p) = \frac{1}{2} (\bar{F}_i + \bar{F}_{i+1} - \gamma X_i \bar{A}_j X_i^{-1} \Delta Q_p)
\]

\[A_f\]는 국소 예조건화 기법의 예조건화된 시스템 행렬로서 이 행렬로부터 수치 유속(eigenvalue)과 고유치 벡터(eigenvector)를 구한다.

\[
A_f = \Gamma^{-1} A \frac{\partial W}{\partial Q_p} = \begin{bmatrix}
\beta k & \rho T \gamma \beta n_x & \rho T \gamma \beta n_y & 0 & 0 & 0 \\
\frac{n_x}{\rho} & k & 0 & 0 & 0 & 0 \\
\frac{n_y}{\rho} & 0 & k & 0 & 0 & 0 \\
(\gamma - 1)(\beta - 1)k & (\gamma - 1) T \beta n_x & (\gamma - 1) T \beta n_y & k & 0 & 0 \\
0 & 0 & 0 & 0 & k & 0 \\
0 & 0 & 0 & 0 & 0 & k \\
\end{bmatrix}
\]

\[
\beta = \frac{U_r^2}{c^2}, \quad \lambda(A_f) = (k, k, k + c', k' - c', k, k), \quad k = un_x + vn_y - \xi_t
\]

\[
k' = \frac{k}{2}(\beta + 1), \quad c' = \sqrt{\left(\frac{k}{2}(\beta - 1) + U_r^2\right)}
\]
\[
\alpha = 1 - \Theta C_p T = - \frac{C_p T}{U_r} = - \frac{1}{(\gamma - 1)\beta}, \quad \beta = \frac{U_r^2}{c^2}
\]

\[
\Theta = \left(\frac{1}{U_r^2} - \frac{\rho_T}{\rho C_p} \right) = \left(\frac{1}{U_r^2} + \frac{1}{C_p T} \right)
\]

그리고 수치 점성항 \(\Gamma \Delta Q_p\)을 다음과 같이 간단히 쓸 수 있다.

\[
\Gamma \Delta Q_p = -\frac{\rho}{T} (\delta T - \frac{1}{\rho C_p} \delta p) \frac{1}{\lambda_i} \begin{pmatrix}
\frac{1}{u} & v \\
Q & s_1 \\
s_2 & \lambda_i
\end{pmatrix} + \beta \lambda_i \begin{pmatrix}
0 & \delta u - n_2 \delta k \\
\delta v - n_2 \delta k & \frac{\delta Q - k \delta k}{\delta s_1} \\
\delta s_2 & \delta s_2
\end{pmatrix}
\]

\[
\frac{1}{2c^2}(\delta p - \rho (\beta k - \lambda_i) \delta k) \lambda_i \begin{pmatrix}
\frac{\beta k - \lambda_i}{U_r^2} & (\beta k - \lambda_i) u + n_2 \\
(\beta k - \lambda_i) v + n_2 & \frac{(\beta k - \lambda_i) H + \tilde{k}}{U_r^2} \\
(\beta k - \lambda_i) s_1 & \frac{(\beta k - \lambda_i) s_2}{U_r^2}
\end{pmatrix} + \frac{1}{2c^2}(\delta p - \rho (\beta k - \lambda_i) \delta k) \lambda_i \begin{pmatrix}
\frac{\lambda_i - \beta k}{U_r^2} & (\lambda_i - \beta k) u - n_2 \\
(\lambda_i - \beta k) v - n_2 & \frac{(\lambda_i - \beta k) H - \tilde{k}}{U_r^2} \\
(\lambda_i - \beta k) s_1 & \frac{(\lambda_i - \beta k) s_2}{U_r^2}
\end{pmatrix}
\]

\[
\delta p = p^R - p^L, \quad \delta u = u^R - u^L, \quad \delta v = v^R - v^L, \quad \delta T = T^R - T^L
\]

\[
\tilde{k} = n_x u + n_y v, \quad \delta k = n_x \delta u + n_y \delta v
\]

\[
\delta Q = u \delta u + v \delta v
\]

그 밖의 variable들은 Roe의 평균으로 구한다.

\[
\bar{\rho} = \sqrt{\rho^R \rho^L}
\]

\[
\bar{u} = \frac{\sqrt{\rho^R u^R + \sqrt{\rho^L u^L}}}{\sqrt{\rho^R + \sqrt{\rho^L}}}, \quad \bar{v} = \frac{\sqrt{\rho^R u^R + \sqrt{\rho^L v^L}}}{\sqrt{\rho^R + \sqrt{\rho^L}}}
\]

\[
\bar{H} = \frac{\sqrt{\rho^R h^R + \sqrt{\rho^L h^L}}}{\sqrt{\rho^R + \sqrt{\rho^L}}}, \quad \bar{s}_1 = \frac{\sqrt{\rho^R s_1^R + \sqrt{\rho^L s_1^L}}}{\sqrt{\rho^R + \sqrt{\rho^L}}}, \quad \bar{s}_2 = \frac{\sqrt{\rho^R s_2^R + \sqrt{\rho^L s_2^L}}}{\sqrt{\rho^R + \sqrt{\rho^L}}}
\]

여기에서 엔탈피(enthalpy)는 다음과 같이 정의되는 상태 변수(state variable)이고 다음과 같다.

\[
H = \frac{e + p}{\rho}
\]
위의 식들에서 볼 수 있듯이 고유치가 변화하였기 때문에 예조건화된 Navier–Stokes code는 이에 따라 Far-field에서의 경계조건을 수정하여야 한다. Far field는 Riemann variable을 이용하여 경계조건을 적용하고 특성치(characteristic)의 방향에 따라 다음과 같은 물리적으로 타당한 경계조건을 갖는다.

\[
\delta Q_c = X^{-1}_f \delta Q_p = \begin{pmatrix}
\delta T - \frac{1}{\rho C_v} \delta p \\
\frac{1}{n_x} \delta v - \frac{1}{n_y} \delta u \\
\frac{1}{2c} (\delta p - \rho (3k - \lambda) \delta \tilde{k}) \\
\frac{1}{2c} (\delta p - \rho (3k - \lambda) \delta \tilde{k}) \\
\delta s_1 \\
\delta s_2
\end{pmatrix}
\]

여기에서

\[
\delta \tilde{k} = n_x \delta u + n_y \delta v, \quad \delta q_{i,1} = \delta T - \frac{1}{\rho C_v} \delta p, \quad \delta q_{i,2} = \delta p - \rho (3k - \lambda) \delta \tilde{k}
\]

아음속 흡입구 조건은 다음과 같다.

\[
p_b = \frac{1}{2} \left(p_\infty + p_i - \text{sign}(\lambda_1) \rho c^2 \tilde{k} \right)
\]

\[
T_b = T_\infty - \frac{p_\infty - p_b}{\rho C_p}
\]

\[
u_b = u_\infty - \frac{(p_\infty - p_b) n_x}{\rho \left(\frac{k}{2} (\beta - 1) + \text{sign}(\lambda_1) c' \right)}
\]

\[
v_b = v_\infty - \frac{(p_\infty - p_b) n_y}{\rho \left(\frac{k}{2} (\beta - 1) + \text{sign}(\lambda_1) c' \right)}
\]

여기에서 아래첨자 \(i\)는 computational domain의 내부의 점을, 하첨자 \(b\)는 경계면을, 그리고 아래첨자 \(\infty\)는 computational domain의 밖을 의미한다.

또한 아음속 출구조건은 다음과 같다.

\[
p_b = \frac{1}{2} \left(p_\infty + p_i - \text{sign}(\lambda_1) \rho c^2 \tilde{k} \right)
\]

\[
T_b = T_i - \frac{p_i - p_b}{\rho C_p}
\]

\[
u_b = u_i - \frac{(p_i - p_b) n_x}{\rho \left(\frac{k}{2} (\beta - 1) - \text{sign}(\lambda_1) c' \right)}
\]
\[v_b = v_i - \frac{(p_i - p_b)n_y}{\rho \left(\frac{k}{2} (\beta - 1) - \text{sign}(\lambda_i) c' \right)} \]

2.4.3. 고차의 MUSCL

단순한 상류 차분만 적용할 경우 수치 기법의 공간 정확도는 1차가 된다. 따라서 보다 정확한 해를 얻기 위해서 Van Leer의 MUSCL extrapolation 기법을 적용해서 고차의 공간이산화를 얻는다. Van Albada의 Limiter를 사용할 때는 MUSCL extrapolation의 식은 다음과 같이 된다.

\[Q^R_{p, i-1/2} = Q_{p, i} - \frac{s \sigma}{4} [(1 + sK) \Delta_+ + (1 - sK) \Delta_-] \]

\[Q^L_{p, i+1/2} = Q_{p, i} + \frac{s \sigma}{4} [(1 - sK) \Delta_+ + (1 + sK) \Delta_-] \]

\[s = \frac{2 \Delta_+ \Delta_- + \epsilon}{\Delta_+^2 + \Delta_-^2 + \epsilon} \quad \epsilon = 10^{-7} \sim 10^{-8} \quad (43) \]

2.4.4. 점성항의 공간이산화

점성항을 계산하기 위해서는 속도 및 온도의 공간 미분치를 구해야 한다. 본 연구에서는 gradient theorem을 이용하여 공간 미분치를 구하였다. Gradient Theorem은 다음과 같다.

\[\int_V \nabla f dV = \int_S f \hat{n} dS \quad (44) \]

작은 체적에 대하여는 근사적으로 다음의 식과 같다.

\[\nabla f = \frac{1}{V} \int_S \hat{n} dS \quad (45) \]

위식을 그림과 같은 작은 auxiliary cell에 대하여 적용을 하면,

\[\nabla f_{i+1/2, j} = \frac{1}{V_{i+1/2, j}} \left[\begin{array}{c} (f \hat{n} \Delta S)_{i+1, j} - (f \hat{n} \Delta S)_{i, j} \\ + \frac{1}{2} (f \hat{n} \Delta S)_{i, j+1/2} + \frac{1}{2} (f \hat{n} \Delta S)_{i+1, j+1/2} \\ - \frac{1}{2} (f \hat{n} \Delta S)_{i, j-1/2} - \frac{1}{2} (f \hat{n} \Delta S)_{i+1, j-1/2} \end{array} \right] \quad (46) \]
아uxiliary cell의 표면에서의 variable의 값은 다음과 같이 주위의 평균값을 사용한다.

\[
\bar{f}_{i,j} = \frac{1}{2} \left[f_{i,j+1} + f_{i,j} \right]
\]

또한, auxiliary cell의 체적은 다음과 같다.

\[
V_{i+1,j} = \frac{1}{2} \left[V_{i+1,j} + V_{i,j} \right]
\]

위와 같은 방법을 사용하면, auxiliary cell의 면 vector와 체적을 따로 기억할 필요가 없다.

2.4.5. 수치 적분 방법

2.4.5.1. 정상유동 해석

정상유동해석을 위하여 비정상 방정식에서 시간항을 0이 되는 \(Q_t\)를 구한다. 이
러한 방법을 시간진진방법(time marching method)라 한다. 위침자 \(n\)은 시간간격이
라 하고 Crank-Nickolson의 적분방법을 적용하면,
\[
\begin{align*}
\frac{\Delta Q^n}{\Delta t} + \theta R^{n+1} + (1-\theta)R^n &= 0
\end{align*}
\] (51)

이 식을 약한 연계방법(loosely coupled method)에 의하여 시간 전진법을 적용한다. 약한 연계방법은 난류 점성계수를 고정하고 Navier-Stokes 방정식을 해석하고 유동 변수를 고정하고 난류 모델 방정식을 해석하는 방법이다. 약한 연계방법은 두 방정식을 동시에 해석하는 강한 연계방법(strongly coupled method)에 비해 계산시간이 빨라도 memory의 필요량이 작은 장점이 있으며 수치적인 특성도 강한 연계방법과 차이가 없다.

식(51)을 선형화하여 다시 쓰면,
\[
[D + \frac{\theta \Delta t}{V} (A+B)] \Delta Q = - \Delta t R
\] (52)

여기에서 \(A\), \(B\)와 \(D\)는 다음과 같다.

\[
A = \begin{bmatrix}
\partial F_{i+1/2}/\partial Q_i + \partial F_{i+1/2}/\partial Q_{i+1} & \partial F_{i+1/2}/\partial Q_{i+1} & \partial F_{i+1/2}/\partial Q_{i+2} \\
\partial F_{i-1/2}/\partial Q_i - \partial F_{i-1/2}/\partial Q_{i-1} & \partial F_{i-1/2}/\partial Q_{i-1} & \partial F_{i-1/2}/\partial Q_{i-2} \\
\end{bmatrix} \Delta S_{i+1/2}
\]
\[
B = \begin{bmatrix}
\partial F_{j+1/2}/\partial Q_j + \partial F_{j+1/2}/\partial Q_{j+1} & \partial F_{j+1/2}/\partial Q_{j+1} & \partial F_{j+1/2}/\partial Q_{j+2} \\
\partial F_{j-1/2}/\partial Q_j - \partial F_{j-1/2}/\partial Q_{j-1} & \partial F_{j-1/2}/\partial Q_{j-1} & \partial F_{j-1/2}/\partial Q_{j-2} \\
\end{bmatrix} \Delta S_{j+1/2}
\] (53)

또한 diagonal matrix는 다음과 같다.
\[
D = \Gamma - \theta \Delta t K
\] (54)

2.4.5.2. AF-ADI(Approximate Factorization)

AF-ADI(Approximate Factorization-Alternate Direction Implicit) 방법을 적용하자. 이때 원칙의 식(53)으로 주어진 행렬의 계산에 1차의 Roe의 기법을 사용하면 tri-diagonal matrix구조를 유지하여 빠른 계산이 가능하다.
\[
[D + \frac{\theta \Delta t}{V} A] D^{-1} [D + \frac{\theta \Delta t}{V} B] \Delta Q = - \Delta t R
\] (55)

식(79)는 다음과 같이 두 단계를 거쳐 \(\Delta Q_p\)를 구한다.
\[
[D + \frac{\theta \Delta t}{V} A] \Delta Q^* = - \Delta t R
\] (56)
\[
\begin{bmatrix}
D + \frac{\theta \Delta t}{V} B \end{bmatrix} \Delta Q = D \Delta Q^*
\]

\[
\begin{bmatrix}
D + \frac{\theta \Delta t}{V} A \end{bmatrix} \text{와 } \begin{bmatrix}
D + \frac{\theta \Delta t}{V} B \end{bmatrix} \text{는 block tri-diagonal matrix로 간단하게 이를 풀 수 있다.}
\]

2.4.5.3. 비정상유동 해석-이중시간적분법

\[
\begin{aligned}
(1 + \phi \frac{2}{\phi} \frac{\Delta W^n}{\Delta t} - \phi \frac{\Delta W^{-1}}{\Delta t}) + \theta R^{i+1} + (1 - \theta) R^n = 0
\end{aligned}
\]

여기에서 correction은 다음과 같다.

\[
\Delta W^n = W^{n+1} - W^n, \Delta W^{-1} = W^n - W^{n-1}
\]

\[
\phi \text{와 } \theta \text{의 조합에 따라 얻을 수 있는 시간 정확도는 다음과 같다.}
\]

\[
\phi = 1 : 2nd order time
\]
\[
\phi = 0 : 1st order time
\]
\[
\theta = 1 : Euler implicit method
\]
\[
\theta = 0 : Trapezoidal scheme
\]
\[
\theta = 0 : Explicit method
\]

예조건화 행렬을 곱한 가상의 시간함을 더하여 이중시간 적분법을 적용하면

\[
\begin{aligned}
(1 + \phi \frac{2}{\phi} \frac{\Delta W}{\Delta t} - \phi \frac{\Delta W^{-1}}{\Delta t} + \Gamma \frac{\Delta Q^i}{\Delta T} + \theta R^{i+1} + (1 - \theta) R^n = 0
\end{aligned}
\]

또는

\[
\begin{aligned}
(1 + \phi \frac{2}{\phi} \frac{\Delta W_p}{\Delta t} - \phi \frac{\Delta W^{-1}}{\Delta t} + \Gamma \frac{\Delta Q^i}{\Delta T} + \theta R^{i+1} + (1 - \theta) R^n = 0
\end{aligned}
\]

예조건화를 적용한 후, \(i\)은 이중시간의 iteration level, \(n\)은 time level이다. 또한, 추
가로 정의된 correction은 다음과 같다.
\[\Delta \bar{W} = W^{t+1} - W^n \] (62)

여기에서 원시형 변수에서 보존형 변수로의 변환행렬 \(M \)은 다음과 같다.
\[
M = \frac{\partial W}{\partial Q} = \begin{bmatrix}
\frac{1}{T} & 0 & 0 & \frac{-\rho}{T} & 0 & 0 \\
\frac{u}{T} & \rho & 0 & \frac{-pu}{T} & 0 & 0 \\
\frac{v}{T} & 0 & \rho & \frac{-pv}{T} & 0 & 0 \\
\frac{H}{T} & 0 & 0 & \frac{-Q}{T} & 0 & 0 \\
s_1 \frac{T}{T} & 0 & 0 & \frac{-\rho s_1}{T} & \rho & 0 \\
s_2 \frac{T}{T} & 0 & 0 & \frac{-\rho s_2}{T} & 0 & \rho \\
\end{bmatrix}
\] (63)

식 (61)를 선형화하면,
\[
\left[D + \frac{\theta \Delta \tau}{V} (A + B) \right] \Delta Q = -\Delta \tau \tilde{R}
\] (64)

여기에서
\[D = \left(1 + \frac{\phi}{2}\right) M \frac{\Delta \tau}{\Delta t} + \Gamma - \theta \Delta \tau K \] (65)

수정된 잔류량은 다음과 같다.
\[\tilde{R} = \left(1 + \frac{\phi}{2}\right) \frac{W^t - W^n}{\Delta t} - \frac{\phi}{2} \frac{W^n - W^{n-1}}{\Delta t} + \theta R^t + (1 - \theta) R^n \] (66)

이중시간 적분법이 수렴하면, \(\tilde{R} = 0 \)이며
\[W^{t+1} = W^t = W^{n+1} \] (67)

이므로 위 식(67)은 식(58)이 되어 정확한 시간해를 구할 수 있게 된다.

식(64)는 ADI기법을 사용해서 다음과 같이 근사 분해할 수 있다
\[
\left[D + \frac{\theta \Delta \tau}{V} A \right] D^{-1} \left[D + \frac{\theta \Delta \tau}{V} B \right] \Delta Q = -\Delta \tau \tilde{R}
\] (68)

\[C_1 = 1 + \frac{\phi}{2} = 0, \ C_2 = \frac{\phi}{2} = 0 \]로 하고 \(\tau = t \)이면, 식(68)은 steady경우의 식을 포함한다.
2.5. Bleed 경계 조건

초음속 흡입구에서 bleed 장치는 경계층을 감소시키고 충격파를 안정시키는 기능을 한다. 그리므로 적절한 위치에서 bleed가 이루어지면 흡입구는 더욱 큰 안정성의 여유를 가지게 된다. 본 논문에서는 Mayer et al.[2]의 연구에서 제안한 constant-pressure bleed 모델을 적용하였다. constant-pressure bleed 모델은 bleed 가 일어나는 곳을 porous wall로 가정하고 local flow의 요소들과 porosity, 그리고 sonic coefficient를 이용하여 벽에 수직한 bleed 속도를 계산한다. Bleed porosity는 bleed 영역의 넓이(A_{surface})와 실제 bleed가 일어나는 hole들의 넓이 합(A_{bleed})의 비로 다음과 같이 정의된다.

\[\phi = \frac{A_{bleed}}{A_{surface}} \quad (69) \]

Sonic coefficient는 유동이 질식 상태(choked condition)일 때의 local 호름에서 호를 수 있는 이론적 최대 유량(m_{ideal})과 실제 bleed 유량(m_{actual})의 비로 bleed hole의 각도(\alpha_{bleed})와 local 마하수(M_{local}), 그리고 공기실(plenum chamber)의 정압력과 local 전합력의 비(P_{plenum}/P_{local})를 이용하여 실험 자료에서 보간(interpolation)하여 구한다. Sonic coefficient의 정의는 다음과 같다.

\[Q_{sonic} = \frac{m_{actual}}{m_{ideal}} = f(\alpha_{bleed}, M_{local}, \frac{P_{plenum}}{P_{local}}) \quad (70) \]

그림 2는 Mayer et al.의 연구와 본 연구에서 이용한 sonic coefficient 실험 자료를 보여준다.

[그림 2. Sonic coefficient data[2]]
Bleed 속도는 노즐(nozzle) 흐름 방정식을 이용하여 구하며 local 흐름의 물성치는 경계층의 경계면(boundary layer edge)에서의 물성치들을 사용하였다. 단면적이 변하는 채널(channel)에서의 calorically 이상 기체의 단열 흐름을 고려하면 노즐 흐름 방정식은 다음과 같다.

\[\dot{m} = \frac{A_p}{\sqrt{T_t}} \sqrt{\frac{\gamma}{R}} \left(1 + \frac{\gamma - 1}{2} M^2 \right)^{-\frac{\gamma+1}{2(\gamma-1)}} M \]

(71)

여기서 \(M=1 \)인 유동 절식 상태가 되면 최대 유량(\(\dot{m}_{\text{ideal}} \))이 되고 \(Q_{\text{sonic}} \)의 정의에 따라 다음과 같이 쓸 수 있다.

\[\dot{m}_{\text{actual}} = Q_{\text{sonic}} \frac{A_{\text{surface}} P_{\text{ideal}}}{\sqrt{T_{\text{ideal}}}} \sqrt{\frac{\gamma}{R}} \left(\frac{\gamma+1}{2} \right)^{-\frac{\gamma+1}{2(\gamma-1)}} \]

(72)

식(72)를 bleed 속도(\(u_{\text{bleed}} \))에 관한 식으로 변환하면 다음과 같다.

\[u_{\text{bleed}} = Q_{\text{sonic}} \frac{T_u P_{\text{ideal}}}{P_w \sqrt{T_{\text{ideal}}}} \sqrt{\frac{\gamma}{R}} \left(\frac{\gamma+1}{2} \right)^{-\frac{\gamma+1}{2(\gamma-1)}} \]

(73)

식 (73)에서 \(p_w, T_u \)는 벽면에서의 물성치를 나타낸다. bleed 호름이 벽면의 수직 이라 가정하면 다음과 같은 방법으로 bleed가 있는 벽면에서의 속도 경계 조건에 bleed 속도를 적용할 수 있다.

\[u = u_w + u_{\text{bleed}} \]

(74)

속도를 제외한 \(p, T \)와 같은 변수들은 외삽법(extrapolation)을 이용하여 경계 조건에 적용하였다.
3. 수치해석 결과 및 프로그램 검증

3.1. 축대칭 원추(Cone)에서의 호름 해석

그림 3. 원추(cone)의 121×81 격자계
표 1에서는 위에서 주어진 원추 주위에서의 흐름 문제에 대한 해석적인 해와 개발한 코드로 구한 해, 그리고 WIND-AXI와 NPARC-AXI로 구한 해를 오차와 함께 비교하여 나타내었다. 표에서 볼 수 있듯이 개발된 코드의 해는 해석적인 해와 거의 일치하며 해의 오차는 타 코드에 비교하여 비슷한 수준임을 알 수 있다. (아래 첨자 1은 자유류에서의 물성치를 나타내고 아래 첨자 2는 표면에서의 물성치를 나타낸다.) 그림 5와 그림 6에는 개발된 코드를 이용하여 구한 마하수의 contour와 WIND-AXI 및 NPARC-AXI로 구한 마하수 contour를 나타내었다. 위에서 언급한 것과 같이 경사 충격파가 발생하는 것을 확인할 수 있으며 경사선을 따라 마하수가 일정한 것을 볼 수 있다.

<table>
<thead>
<tr>
<th></th>
<th>M_1 (error%)</th>
<th>$\frac{p_2}{p_1}$ (error%)</th>
<th>$\frac{T_2}{T_1}$ (error%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical Solution</td>
<td>2.1469</td>
<td>1.4234</td>
<td>1.1063</td>
</tr>
<tr>
<td>present Code</td>
<td>2.14674 (-0.0075)</td>
<td>1.37395 (-3.4741)</td>
<td>1.09514 (-1.0088)</td>
</tr>
<tr>
<td>WIND-AXI</td>
<td>2.14678 (-0.0055)</td>
<td>1.37406 (-3.4663)</td>
<td>1.09512 (-1.0102)</td>
</tr>
<tr>
<td>NPARC-AXI</td>
<td>2.14674 (-0.0074)</td>
<td>1.37407 (-3.4658)</td>
<td>1.09514 (-1.0092)</td>
</tr>
</tbody>
</table>

표 1. Analytical Solution과의 비교
그림 5. 본 연구의 마하수 contour ($M_\infty=2.35$)

그림 6. WIND와 NPARC[13]의 마하수 Contour
3.2. 축대칭 범프(Bump)에서의 흐름 해석

개발된 축대칭 압축성 난류 해석 코드의 검증을 위해 축대칭 범프 주변의 흐름을
\(k-\omega \) BSL/SST 모델과 \(q-\omega \) 모델의 두 가지 난류모델을 이용하여 해석하였다.

그림 7. 범프(Bump)의 기하학적 형상

축대칭 범프의 형상은 그림 7와 같다. 축대칭 범프에서의 흐름의 마하수는 0.875이고
단위 길이당 레이놀즈 수는 13.6\times10^6 m^{-1}이고 범프의 길이 \(c=20.3 \text{cm} \)이다. 격자계
는 1개의 블록(Block)으로 구성되어 있으며 181×101개의 격자로 이루어져 있으며
그림 8에 나타나있다.

그림 8. 범프(bump)근처의 계산 격자계

본 논문에서 개발한 코드로 해석한 결과를 Johnson et al.[14]가 실험적으로 수행
한 축대칭 범프 주변의 흐름 해석 결과와 비교하였다. 그림 9에서 보듯이 수치 해석에
쓰인 두 난류 모델 모두 수렴 특성에 문제가 없음을 알 수 있다. 그림 10에서
는 본 연구 결과와 Johnson et al.의 실험결과 및 Barakos et al.[15]의 수치결과와
속도 분포(Velocity Profile)를 비교하였다. 그림 10에서는 본 논문의 두 가지 난류
모델의 수치 해석 결과가 실험 결과와 비슷한 경향을 보이는 것을 알 수 있으며
Barakos et al.의 수치 결과로는 실험결과에 더욱 근접한 것을 볼 수 있다. 특히
\(q-\omega \) 모델이 실험 결과와 가장 일치하는 것으로 나타났다. 그림 11에서는 본 연구
결과와 Johnson et al.의 실험결과 및 Barakos et al.의 수치결과와 난류 운동 에너
지(Turbulent Kinetic Energy)의 분포를 비교하였다. 그림 11에서는 본 연구 결과가
실험치 및 수치결과와 비슷한 경향을 보이는 것을 알 수 있다. 그림 12는 본 연구

22
결과와 Johnson et al.의 실험결과와의 표면에서의 C_p 분포를 비교 한 것이다. 두 난류 모델 모두 유동의 박리 영역 근처($x/c = 1$)에서 약간의 차이를 보이지만 전체적으로 실험치와 잘 일치하는 것을 알 수 있다.

그림 9. 수렴특성비교
그림 10. 속도 분포 (Velocity Profile) 비교

그림 11. 난류 운동 에너지 (Turbulent Kinetic Energy) 분포 비교
그림 12. 표면 C_p 분포 비교
3.3. Bleed 영역이 있는 평판 위의 초음속 흐름 해석

개발한 코드에 적용된 bleed 경계 조건을 검증하기 위한 첫 번째 적용 사례로 bleed 영역을 포함한 평판 위에서의 흐름을 2차원 해석하였다. 해석 결과는 Willis et al.[16]의 풍동 시험 결과와 비교하였다. Willis et al.의 연구에서는 다양한 조건에서 시험이 수행되었으나 본 논문에서는 그 중에서 두 경우에 대해 비교해 보았다. 첫 번째 해석 조건은 마하수 1.27의 초음속 uniform 흐름이고 단위 길이 당 레이놀즈 수는 1.42×10^7 m⁻¹이다. Bleed 영역은 6줄(row)로 총 72개의 구멍(hole)이 분포되어 있으며 각 구멍은 지름이 0.635cm이고 기울기가 90°이다. Porosity는 약 0.19 정도이며 bleed 양이 최대가 되는 plenum chamber의 정압력에 대해 해석하였다. 두 번째 해석 조건은 마하수가 1.58이고 bleed 구멍의 기울기가 20°이며 그 외의 다른 조건은 첫 번째 조건과 동일하다.

그림 13. 격자계(95×50)와 경계 조건

그림 13에는 해석에 사용한 95×50의 격자계와 적용된 경계 조건에 대해 표시하였다. Willis와 Davis의 연구와 같은 조건에서 해석하기 위해서 inflow의 경계 조건에 는 Willis와 Davis의 연구에서의 기준 속도 분포(reference velocity profile)를 적용하였으며 격자계의 위쪽 경계는 풍동의 중앙으로 대칭 경계조건을 적용하였다. 그림 13과 그림 14에서는 Willis와 Davis의 연구와 본 연구의 속도 분포와 incompressible shape factor(H_{inc})를 비교하였다. incompressible shape factor는 경계층의 적분 parameter로 다음과 같이 정의한다.

\[H_{inc} = \frac{\delta^*}{\theta} \] \hspace{1cm} (75)

식(75)에서 \(\delta^*\)는 displacement thickness이고 \(\theta\)는 momentum thickness이다.
M = 1.27, 90-deg bleed holes

그림 14. Velocity profile 비교(case1)

M = 1.58, 20-deg bleed holes

그림 15. Velocity profile 비교(case2)
그림 14와 그림 15를 보면 bleed가 있을 때와 없을 때 모두 본 연구의 downstream에서의 속도 분포가 실험치와 차이가 나는 것을 알 수 있다. 이것은 실험치와 본 연구의 upstream의 속도 분포는 같지만 평판 표면의 거칠기가 상이하고 bleed 장치의 설치로 인한 흐름의 변화를 본 연구에서는 고려할 수 없기 때문에 오는 차이로 생각할 수 있다. Bleed 후의 결과를 비교해보면 bleed 후에 H_{bc}가 감소하는 경향을 보이고 있으며 속도 분포에서도 흐름이 평판에 밀착되는 것을 볼 수 있다. 이것을 통해 bleed가 경계층 분리를 지연시키는 효과가 있다는 것을 알 수 있다. Bleed 후의 속도 분포의 변화가 두 번째 경우가 더욱 크게 나타나는 것은 bleed 구멍의 기울기가 20°일 때 bleed 양이 기울기가 90°일 때보다 더욱 많기 때문이다. 이것은 2.5절의 그림 2에서 확인할 수 있다.

그림 16과 17에서는 본 연구의 첫 번째 해석 경우인 마하수 1.27에 bleed 구멍의 기울기가 90°인 조건에서 수치 해석을 실시한 Slater et al.[3]의 마하수 contour를 본 연구의 마하수 contour와 비교하였다. bleed가 시작되는 지점에서 흐름이 가속되고 bleed 후에 경계층 양역이 감소되는 등 전체 흐름 양역에서 비슷한 경향을 보이고 있는 것을 확인할 수 있다.
그림 16. Slater et al.[3]의 마하수 contour

그림 17. 본 연구의 마하수 contour
3.4. 경사충격과와 Bleed 영역이 있는 평판 위의 초음속 흐름 해석

Bleed 경계 조건을 검증하기 위한 두 번째 적용 사례로 그림 18과 같이 아래에는 bleed 영역을 가지 평판이 있고 위쪽에는 평판이 8°의 기울기를 가지고 위치해 있어 bleed 영역과 경사 충격과 간의 상호 작용이 발생하는 문제를 선택하였다. 해석 마하수는 2.46이고 단위 길이 당 레이놀즈 수는 1.81×10^7 m^-1이다. Bleed 영역은 흐름 방향으로 25개의 열로 총 100개의 구멍으로 이루어져 있으며 각각의 구멍은 지름이 0.635cm 이고 기울기가 90°이다. Porosity는 0.2096이고 plenum chamber의 정압력은 반 절식(half choked) 조건일 때 자유류 전압력의 10.1%이고 절식(chocked) 조건일 때는 자유류 전암력의 3.21%이다. Bleed 영역의 위치는 이론적으로 경사충격과가 bleed 영역 중앙에 생기도록 위치해 있으며 Bleed 영역의 흐름 방향 길이는 9.52cm이다. 해석결과는 Willis et al.의 실험 결과 및 Slater et al.[3]의 수치 해석 결과와 비교하였다.

그림 18. 격자계(158×80) 및 경계 조건

그림 18에서는 본 연구에서 사용한 158×80개의 격자계와 적용한 경계 조건을 나타내었다. 입구의 경계 조건은 Willis et al.의 기준 속도 분포(reference velocity profile)를 입력으로 받아 적용하였다. 그림 19와 20에는 bleed 영역 근처의 벽면에서의 압력 분포를 나타내었다. Bleed 영역은 X=0.0에서 X=9.52까지이다. 그림 19는 Willis et al.의 실험치와 비교한 것이고 그림 20은 Slater et al.의 수치 해석 결과와 비교한 것이다. 실험치와 비교한 그림 19를 보면 압력이 증가하기 시작하는 지점이 실험치와 본 연구의 결과가 다르며 압력이 다시 일정해 지는 지점은 비슷하다. 실험치가 경사충격과와 bleed 영역간의 상호 작용으로 인한 흐름 분리 영역이 넓다는 것으로 해석 할 수 있다. 그림 20에서는 두 수치해석 결과 간의 큰 차이는 없으며 비슷한 경향성을 가지고 있다.
그림 19. Bleed 영역 근처에서의 벽면 압력 분포 비교(Willis et al.[17])

그림 20. Bleed 영역 근처에서의 벽면 압력 분포 비교(Slater et al.[3])
그림 21에서는 bleed 영역의 시작점에서 18cm 거리의 downstream에서의 속도 분포를 비교하였다. 결과를 보면 개발한 코드의 수치 해석 결과와 실험치의 차이를 확인할 수 있다. 절석 조건에서는 속도 분포의 차이가 거의 없으나 그 외의 경우에 는 속도 분포의 차이가 뚜렷하다. Willis et al.의 기준 속도 분포가 입구 경계에서의 속도 분포가 아니고 bleed 영역의 시작점에서 8cm 거리의 upstream에서의 속도 분포이기 때문에 입구 경계 조건을 통해 기준 속도 분포를 맞추는 것이 매우 어렵다. 여러 번의 해석을 수행해 본 결과, downstream에서의 속도 분포는 정상 충격과 이전의 속도 분포에 매우 민감하기 때문에 기준 속도 분포가 약간의 차이를 보이면 downstream에서는 큰 차이를 보일 수 있다. 그림 21에는 각 경우에 대해 incompressible shape factor를 표시하였다. 본 연구의 결과와 실험치는 큰 차이를 보이지 않는다. Slater et al.의 연구에서의 incompressible shape factor는 bleed가 없을 때 1.63, 반절석 조건에서 1.36, 절석 조건에서 1.30으로 본 연구의 결과와 다르지 않을음을 확인하였다.

그림 21. 속도 분포(velocity profile) 비교
4. 초음속 흡입구 유동의 수치 모사

개발한 코드를 이용하여 초음속 흡입관 유동의 수치 모사를 수행하였다. 수치 모사에 이용된 흡입관은 NASA Ames Research Center의 Sorensen et al.[18]에 의해 연구된 혼합 압축(Mixed-Compression) 형태의 축대칭 흡입구로 Bleed 장치가 장착되어 있다. Sorensen et al.의 연구에서는 engine-face의 위치에 따라 1.50D형과 1.75D형의 두 가지 흡입구에 대해 실험하였으며 본 연구에서는 1.50D형에 대해서만 수치 모사를 수행하였다.

4.1. Bleed 영역이 없는 초음속 흡입구 유동의 수치 모사

해석 조건을 알아보면 자유류의 마하수는 3.0이며 엔진면(engine-face)에서의 정압력은 자유류의 정압력의 30배이고 레이놀즈 수는 단위 길이당 2×10^6 ft$^{-1}$이다.격자계는 두 개의 블록(Block)으로 각각은 213×80개의 격자와 411×100개의 격자로 구성되어 있다.

4.1.1. 초음속 흡입구 유동의 3단계 해석 방법

초음속 흡입구의 경우 전체 영역의 초기 조건이 초음속으로 주어지기 때문에 출구의 초기 경계 조건은 초음속 경계 조건으로 주어진다. 그러나 초음속 흡입구의 출구는 engine-face 이기 때문에 주어진 유량이나 일정한 배압을 갖는 아음속 출구 경계 조건이 적용되어야 한다. 이에 본 연구에서는 다음의 3단계의 해석 방법을 사용하였다.

1) 1단계 : 초음속 초기 조건에 초음속 출구 조건으로 시작하여 해석을 수행한다. (그림 22)
2) 2단계 : 1단계 결과에 흡입구의 목에서부터 출구까지의 흐름을 초음속에서 아음속으로 연속적으로 변화하는 흐름으로 대체하여 3단계를 위한 초기 조건을 만든다.(그림 23)
3) 3단계 : 2단계에서 만든 초기 조건을 입력하고 출구 경계 조건을 배압이 일정한 아음속 출구조건으로 적용하여 해석을 수행한다.(그림 24)

그림 22부터 그림 24에는 이러한 3단계 해석 방법의 과정을 마하수 contour로 나타내었다.
그림 22. 1단계: 초음속 출구 경계 조건

그림 23. 2단계: 아음속 출구를 위한 흐름의 초기화

그림 24. 3단계: 고정된 배압의 아음속 출구 조건
본 연구 결과는 Bleed 경계 조건이 포함되지 않았으므로 Sorensen et al.의 풍동 실험 결과와 정량적으로 비교하기가 어렵다. 이에 Sorensen et al.와 같은 조건에서 흡입관의 수치 모사를 수행한 Slater et al.의 결과와 정성적으로 비교하였다. 그림 25에는 Slater et al.의 마하수 contour를 그림 26에는 본 연구에서 해석한 마하수 contour를 나타내었다. Slater et al.의 연구에는 bleed 경계 조건이 적용되어 있어 본 연구와 차이가 있지만 마하수 contour에서는 개략적인 흐름의 양상과 충격파의 위치 등은 큰 차이가 없음을 볼 수 있다. Bleed 경계 조건이 적용된 Slater et al.의 마하수 contour를 보면 bleed 영역을 포함하지 않은 본 연구의 결과보다 경계층이 현저하게 줄어들 것을 볼 수 있다. 본 연구의 bleed 영역을 포함하지 않은 흡입구의 경우 배압의 변화에 수직 충격파가 매우 민감하여 'unstart' 현상이 자주 발생하는 데 bleed 영역이 추가되면 이러한 현상이 줄어들 것으로 기대된다.
그림 25. Slater et al.[3]의 마하수 Contour

그림 26. 본 연구의 마하수 Contour
4.2. Bleed 영역을 포함한 초음속 흡입구 유동의 수치 모사

4.2.1. 해석 조건 및 방법

4.1에서 해석한 것과 동일한 흡입구를 bleed 영역을 포함해서 수치 모사하였다. 4.1에서와 마찬가지로 자유류의 마하수 3.0이고 레이놀즈 수는 단위 길이당 2×10^6 \(\text{ft}^{-1} \)이다. 격자계는 두 개의 블록(Block)으로 각각은 213×80개의 격자와 597×100개의 격자로 구성되어 있다. 해석한 흡입구는 cowl과 centerbody에 각각 2개의 bleed 영역을 가지고 있으며 그림 27에 각 bleed 영역의 위치와 흡입구 목(throat) 부분의 격자계를 함께 나타내었다.

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{bleed_region_diagram.png}
\caption{Bleed 영역과 흡입구 목 부분 격자계}
\end{figure}

ZONE I 과 ZONE II의 bleed 영역은 경사충격파와 경계층 간의 상호 작용을 감소시키기 위한 영역이며 ZONE III와 ZONE IV의 bleed 영역은 흡입구 목에서의 수직 충격파가 이동하는 것을 조절하는 영역으로 수직 충격파가 전진하여 엔진이 'unstart' 상태가 되는 것을 막는 역할을 한다. 표 2에는 각 bleed 영역에 대한 정보들을 나타내었다. 표 2에서 D는 bleed hole의 지름, D/L은 bleed hole의 지름과 bleed hole의 길이의 비, P_u는 plenum chamber에서의 정압력, P_t는 자유류의 진압력을 의미한다. 개발된 코드의 constant-pressure bleed 모델을 적용하기 위해서는 plenum chamber에서의 정압력이 필요하지만 Sorensen et al.의 연구에는 주어져 있지 않다. plenum chamber에서의 정압력을 정하기 위해서 Slater et al.의 연구와 마찬가지로 흡입구를 supercritical 조건에서 수치 해석을 반복하여 각 bleed 영역의 plenum chamber의 정압력을 추정하였다. 초임계(supercritical) 조건에서는 bleed 유량이 거의 변하지 않기 때문에 Sorensen et al.의 연구에 주어진 bleed 유량 정보를 이용하여 plenum chamber 정압력을 추정할 수 있다.
본 연구에서는 Sorensen et al.의 실험 결과 및 Slater et al.의 수치 해석 결과와 비교하기 위해 engine-face의 배압을 변화시켜가며 흡입구 유동의 수치 모사를 수행하였다. 출력 경계 조건에 압력이 일정한 아음속 출력 조건을 적용하여 배압의 변화가 가능하도록 하였다. 그리고 4.1.1에서와 마찬가지로 각각의 수치 모사는 3단계의 과정을 거쳐 진행하였다.

4.2.2. 수치 모사 결과 및 비교

흡입구에서의 유동은 engine-face의 조건에 따라 변화한다. 배압이나 유량 조건이 변화하면 이에 따라 흡입구 내의 수직 충격파가 이동을 하고 수직 충격파의 위치에 따라 흡입구는 초임계(supercritical), 아임계(subcritical), 임계(critical) 상태가 된다. 그림 28부터 그림 30에서는 흡입구의 3가지 상태에 대해 마하수 contour로 나타내었다. 그림 28은 engine-face에서의 정압력과 자유류의 진압력의 비($\frac{P_2}{P_{in}}$)가 26.5인 경우로 흡입구의 초임계 상태를 나타낸다. 초임계 상태에서는 수직 충격파가 모든 bleed 영역의 하류(downstream)에 있으며 이 때는 engine-face 조건의 변화나 수직 충격파의 이동에 따라 bleed 유량은 변화하지 않는다. 그림 29는 $\frac{P_2}{P_{in}}$가 31인 경우로 수직 충격파가 ZONE IV의 경계에 접해 있으며 흡입구는 임계 상태에 있다. 이 상태에서 engine-face에서는 유량의 손실이 적으므로 최대 전압력 회복이 이루어지므로 흡입구는 임계 상태에서 운용되어야 한다. 그림 30은 $\frac{P_2}{P_{in}}$가 33인 경우로 수직 충격파가 bleed 영역 내에 있으며 흡입구는 아임계 상태에 있다. 이 경우에는 수직 충격파가 본진하면 bleed 유량이 늘어나고 engine-face에서의 유량이 줄어든

<table>
<thead>
<tr>
<th>ZONE I</th>
<th>ZONE II</th>
<th>ZONE III</th>
<th>ZONE IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porosity(%)</td>
<td>41.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\frac{P_2}{P_{in}}$</td>
<td>unknown</td>
<td>unknown</td>
<td>unknown</td>
</tr>
<tr>
<td>D(inch)</td>
<td>0.025</td>
<td>0.125</td>
<td>0.125</td>
</tr>
<tr>
<td>L/D</td>
<td>2.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Angle(deg)</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position (from centerbody nose, inch)</td>
<td>33.00-35.00</td>
<td>35.46-36.44</td>
<td>38.46, 39.28, 37.51, 37.84, 38.16, 38.97, 39.79</td>
</tr>
</tbody>
</table>

표 2. Bleed 영역의 Configuration
다. 수직 충격파의 전진이 계속되면 엔진은 ‘unstart’ 상태에 빠지게 된다.

초음속 흡입구의 성능을 나타내는 ‘cane-curve’를 그림 31에 나타내었다. \(\frac{W_b}{W_0} \)는 총 bleed 유량과 흡입구에 들어오는 총유량의 비를 나타내고 \(\frac{p_{t_1}}{p_{t_0}} \)는 engine-face에서의 전압력과 자유류의 전압력의 비를 나타낸다. 그림 31에서는 본 연구의 결과와 Sorensen et al.의 실험 결과 및 Slater et al.의 수치 해석 결과를 비교하였다. 그림 31에서 본 연구의 결과와 실험치 및 타 수치 해석 결과는 비슷한 경향성을 나타낸다. 그러나 본 연구와 같은 constant-pressure bleed 모델을 적용한 Slater et al.의 결과는 아임계 상태에서 차이를 보인다. 이는 초임계 상태에서 추정한 총 bleed 양은 차이가 없지만 각각의 bleed 영역에서의 bleed 양은 차이가 날 수 있고 이는 아임계 상태가 되면서 ZONE III과 ZONE IV의 bleed 양이 크게 변화하기 때문에 두 영역의 조건이 같이 않으면 같은 모델이라 하더라도 차이를 보일 수 있다.
그림 28. 초임계(Supercritical condition)

그림 29. 임계(Critical condition)

그림 30. 아임계(Subcritical condition)
그림 31. Cane curve 비교
5. 결론 및 향후 과제

예조건화 기법이 적용된 2차원 압축성 유동을 해석하는 기존의 코드를 이용하여 축대칭 초음속 흡입구 유동을 해석할 수 있는 축대칭 난류 압축성 Solver를 개발하였다. 개발한 Solver에 constant-pressure bleed 경계 조건을 적용하여 bleed 영역이 있는 초음속 흡입구의 수치 모사도 가능하도록 하였다. 범프(Bump) 주변의 압축성 난류 유동과 원추(Cone) 주변의 비점성 압축성 유동을 해석하고 실험적인 해석 결과와 수치 해석 결과, 그리고 해석적 해와 비교하여 개발한 코드를 검증하였으며 두 가지 난류 모델을 적용하여 타 수치 결과와 비교하였다. 적용된 bleed 경계 조건은 평판 위의 uniform 혼름과 경사 충격파와 bleed 영역 간의 상호 작용이 있는 평판 위의 혼름을 해석하여 검증하였다. 그리고 bleed 영역을 포함한 축대칭 초음속 흡입구 유동의 수치 모사를 통하여 초음속 흡입구 해석이 가능함을 확인하였다. 차후 연구에서는 유량 조건으로 주어지는 engine-face 경계 조건을 적용하여 초음속 흡입구의 비정상 해석을 수행할 것이며 초음속 흡입구의 수치 해석 및 설계에 이용할 것이다.
참 고 문 헌

