An experimental study on the fabrication of glass-based acceleration sensor body using micro powder blasting method

Title
An experimental study on the fabrication of glass-based acceleration sensor body using micro powder blasting method
Authors
Cho, M.W.; Shin, B.C.
Keywords
acceleration sensor, micro powder blasting, micromachining
Issue Date
2007-05
Publisher
MOLECULAR DIVERSITY PRESERVATION INTERNATIONAL
Abstract
This study investigated the feasibility of the micro powder blasting technique for the micro fabrication of sensor structures using the Pyrex glass to replace the existing silicon-based acceleration sensor fabrication processes. As the preliminary experiments, the effects of the blasting pressure, the mass flow rate of abrasive and the number of nozzle scanning times on erosion depth of the Pyrex and the soda lime glasses were examined. From the experimental results, optimal blasting conditions were selected for the Pyrex glass machining. The dimensions of the designed glass sensor was 1.7x1.7x0.6mm for the vibrating mass, and 2.9x0.7x0.2mm for the cantilever beam. The machining results showed that the dimensional errors of the machined glass sensor ranged from 3 mu m minimum to 20 mu m maximum. These results imply that the micro powder blasting method can be applied for the micromachining of glass-based acceleration sensors to replace the exiting method.
URI
http://dspace.inha.ac.kr/handle/10505/1838
ISSN
1424-8220
Appears in Collections:
College of Engineering(공과대학) > Mechanical Engineering(기계공학) > Journal Papers, Reports(기계공학 논문, 보고서)
Files in This Item:
An experimental.pdfDownload

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse